Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 97
3.
Bioorg Chem ; 147: 107387, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643561

Histamine 4 receptor (H4R), the most recently identified subtype of histamine receptor, primarily induces inflammatory reactions upon activation. Several H4R antagonists have been developed for the treatment of inflammatory bowel disease (IBD) and atopic dermatitis (AD), but their use has been limited by adverse side effects, such as a short half-life and toxicity. Natural products, as an important source of anti-inflammatory agents, offer minimal side effects and reduced toxicity. This work aimed to identify novel H4R antagonists from natural products. An H4R target-pathway model deconvoluted downstream Gi and MAPK signaling pathways was established utilizing cellular label-free integrative pharmacology (CLIP), on which 148 natural products were screened. Cryptotanshinone was identified as selective H4R antagonist, with an IC50 value of 11.68 ± 1.30 µM, which was verified with Fluorescence Imaging Plate Reader (FLIPR) and Cellular Thermal Shift (CTS) assays. The kinetic binding profile revealed the noncompetitive antagonistic property of cryptotanshinone. Two allosteric binding sites of H4R were predicted using SiteMap, Fpocket and CavityPlus. Subsequent molecular docking and dynamics simulation indicated that cryptotanshinone interacts with H4R at a pocket formed by the outward interfaces between TM3/4/5, potentially representing a new allosteric binding site for H4R. Overall, this study introduced cryptotanshinone as a novel H4R antagonist, offering promise as a new hit for drug design of H4R antagonist. Additionally, this study provided a novel screening model for the discovery of H4R antagonists.


Biological Products , Dose-Response Relationship, Drug , Drug Discovery , Receptors, Histamine H4 , Humans , Biological Products/chemistry , Biological Products/pharmacology , Receptors, Histamine H4/antagonists & inhibitors , Receptors, Histamine H4/metabolism , Structure-Activity Relationship , Molecular Structure , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , Histamine Antagonists/pharmacology , Histamine Antagonists/chemistry , Molecular Docking Simulation , Phenotype
4.
Sci Total Environ ; 928: 172411, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38608898

Exposure to diisodecyl phthalate (DIDP) during early pregnancy may be a risk factor for depressive behavior in offspring. While ozone (O3) exposure also raises the probability of depressive behavior during the preceding DIDP-induced process. In the present study, we investigated the effects of prenatal exposure to DIDP and O3 on the development of depressive-like behavior in offspring mice. The study found that prenatal exposure to both DIDP and O3 significantly increased depressive-like behavior in the offspring mice compared to either DIDP or O3 alone. Prenatal exposure to DIDP and O3 obviously increased the levels of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol, and decreased the levels of brain-derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), dopamine (DA) and norepinephrine (NE) in the brain tissues of offspring mice. Transcriptome analysis further revealed significant alterations in genes related to oxidative stress and TWIST1 (a helix-loop-helix transcription factor) in response to the combined exposure to DIDP and O3. HPA axis activation, dysregulation of neurodevelopmental factors, oxidative stress and TWIST1 involvement, collectively contributed to the development of depression-like behaviors in offspring mice following prenatal exposure to DIDP and O3. Moreover, the study also verified the potential role of oxidative stress using vitamin E as an antioxidant. The findings provide valuable evidence for the relationship between co-exposure to DIDP and O3 and depression, highlighting the importance of considering the combined effects of multiple environmental pollutants in assessing their impact on mental health outcomes.


Depression , Oxidative Stress , Ozone , Phthalic Acids , Prenatal Exposure Delayed Effects , Animals , Ozone/toxicity , Oxidative Stress/drug effects , Female , Pregnancy , Mice , Phthalic Acids/toxicity , Depression/chemically induced , Air Pollutants/toxicity , Behavior, Animal/drug effects , Nuclear Proteins/metabolism , Maternal Exposure/adverse effects
5.
Molecules ; 29(7)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38611884

Ginkgo biloba L. (ginkgo) is a widely used medicinal plant around the world. Its leaves, which have been used as a traditional Chinese medicine, are rich in various bioactive components. However, most of the research and applications of ginkgo leaves have focused on terpene trilactones and flavonol glycosides, thereby overlooking the other active components. In this study, a lipophilic extract (GL) was isolated from ginkgo leaves. This extract is abundant in lipids and lipid-like molecules. Then, its effect and potential mechanism on glucose uptake and insulin resistance in C2C12 myotubes were investigated. The results showed that GL significantly enhanced the translocation of GLUT4 to the plasma membrane, which subsequently promoted glucose uptake. Meanwhile, it increased the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream targets. Both knockdown of AMPK with siRNA and inhibition with AMPK inhibitor compound C reversed these effects. Additionally, GL ameliorated palmitate-induced insulin resistance by enhancing insulin-stimulated glucose uptake, increasing the phosphorylation of protein kinase B (PKB/AKT), and restoring the translocation of GLUT4 from the cytoplasm to the membrane. However, pretreatment with compound C abolished these beneficial effects of GL. In conclusion, GL enhances basal glucose uptake in C2C12 myotubes and improves insulin sensitivity in palmitate-induced insulin resistant myotubes through the AMPK pathway.


Ginkgo biloba , Insulin Resistance , AMP-Activated Protein Kinases , Plant Extracts/pharmacology , Insulin , Muscle Fibers, Skeletal , Glucose
6.
Mol Omics ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38686662

Many individuals with pre-diabetes eventually develop diabetes. Therefore, profiling of prediabetic metabolic disorders may be an effective targeted preventive measure. We aimed to elucidate the metabolic mechanism of progression of pre-diabetes to type 2 diabetes mellitus (T2DM) from a metabolic perspective. Four sets of plasma samples (20 subjects per group) collected according to fasting blood glucose (FBG) concentration were subjected to metabolomic analysis. An integrative approach of metabolome and WGCNA was employed to explore candidate metabolites. Compared with the healthy group (FBG < 5.6 mmol L-1), 113 metabolites were differentially expressed in the early stage of pre-diabetes (5.6 mmol L-1 ⩽ FBG < 6.1 mmol L-1), 237 in the late stage of pre-diabetes (6.1 mmol L-1 ⩽ FBG < 7.0 mmol L-1), and 245 in the T2DM group (FBG ⩾ 7.0 mmol L-1). A total of 27 differentially expressed metabolites (DEMs) were shared in all comparisons. Among them, L-norleucine was downregulated, whereas ethionamide, oxidized glutathione, 5-methylcytosine, and alpha-D-glucopyranoside beta-D-fructofuranosyl were increased with the rising levels of FBG. Surprisingly, 15 (11 lyso-phosphatidylcholines, L-norleucine, oxidized glutathione, arachidonic acid, and 5-oxoproline) of the 27 DEMs were ferroptosis-associated metabolites. WGCNA clustered all metabolites into 8 modules and the pathway enrichment analysis of DEMs showed a significant annotation to the insulin resistance-related pathway. Integrated analysis of DEMs, ROC and WGCNA modules determined 12 potential biomarkers for pre-diabetes and T2DM, including L-norleucine, 8 of which were L-arginine or its metabolites. L-Norleucine and L-arginine could serve as biomarkers for pre-diabetes. The inventory of metabolites provided by our plasma metabolome offers insights into T2DM physiology metabolism.

7.
Biochem Biophys Res Commun ; 705: 149742, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38460438

l-norleucine, an isomer of leucine, stimulates the anabolic process of insulin. However, it is not known if and how it improves insulin sensitivity and insulin resistance. This experiment describes the generation of an insulin resistance model using high glucose-induced cells and the administration of 1.0 mmol/L l-norleucine for 48 h, to observe the effects on metabolism and gene expression in skeletal muscle cells. The results showed that l-norleucine significantly increased mitochondrial ATP content, decreased the amount of reactive oxygen species (ROS) and promoted the expression of mitochondrial generation-related genes TFAM, AMPK, PGC-1α in cells under high glucose treatment; at the same time, l-norleucine also increased glucose uptake, suggesting that l-norleucine increased insulin sensitivity and improved insulin resistance. This study suggesting that l-norleucine improves insulin resistance by ameliorating oxidative stress damage of mitochondria, improving mitochondrial function, and improving insulin sensitivity in skeletal muscle cell caused by high glucose, rather than by altering mitochondrial efficiency.


Insulin Resistance , Humans , Insulin Resistance/physiology , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Insulin/metabolism , Norleucine/metabolism , Norleucine/pharmacology , Glucose/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mitochondria, Muscle/metabolism
8.
Mol Carcinog ; 63(5): 977-990, 2024 May.
Article En | MEDLINE | ID: mdl-38376344

Nickel pollution is a recognized factor contributing to lung cancer. Understanding the molecular mechanisms of its carcinogenic effects is crucial for lung cancer prevention and treatment. Our previous research identified the downregulation of a long noncoding RNA, maternally expressed gene 3 (MEG3), as a key factor in transforming human bronchial epithelial cells (HBECs) into malignant cells following nickel exposure. In our study, we found that deletion of MEG3 also reduced the expression of RhoGDIß. Notably, artificially increasing RhoGDIß levels counteracted the malignant transformation caused by MEG3 deletion in HBECs. This indicates that the reduction in RhoGDIß contributes to the transformation of HBECs due to MEG3 deletion. Further exploration revealed that MEG3 downregulation led to enhanced c-Jun activity, which in turn promoted miR-200c transcription. High levels of miR-200c subsequently increased the translation of AUF1 protein, stabilizing SOX2 messenger RNA (mRNA). This stabilization affected the regulation of miR-137, SP-1 protein translation, and the suppression of RhoGDIß mRNA transcription and protein expression, leading to cell transformation. Our study underscores the co-regulation of RhoGDIß expression by long noncoding RNA MEG3, multiple microRNAs (miR-200c and miR-137), and RNA-regulated transcription factors (c-Jun, SOX2, and SP1). This intricate network of molecular events sheds light on the nature of lung tumorigenesis. These novel findings pave the way for developing targeted strategies for the prevention and treatment of human lung cancer based on the MEG3/RhoGDIß pathway.


Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Down-Regulation , Epithelial Cells/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Nickel , rho Guanine Nucleotide Dissociation Inhibitor beta/antagonists & inhibitors , rho Guanine Nucleotide Dissociation Inhibitor beta/genetics , rho Guanine Nucleotide Dissociation Inhibitor beta/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger , SOXB1 Transcription Factors/genetics , Heterogeneous Nuclear Ribonucleoprotein D0/genetics , Heterogeneous Nuclear Ribonucleoprotein D0/metabolism
9.
J Back Musculoskelet Rehabil ; 37(3): 617-628, 2024.
Article En | MEDLINE | ID: mdl-38277281

BACKGROUND: Chronic lower back pain (CLBP) is one of the most common disorders worldwide. Flash cupping has the ability to relieve CLBP; nevertheless, its impact on CLBP and the likely mechanism of action have not been studied. OBJECTIVE: The goal of this study was to assess the impact of a single, brief cupping session on CLBP and low back muscle activity using multichannel surface electromyography (sEMG). METHODS: In this randomized controlled trial, 24 patients with CLBP were enrolled and randomly assigned to the control group (treated by acupuncture) and cupping group (treated by acupuncture and flash cupping). Acupuncture was applied on the shen shu (BL23), dachang shu (BL25), and wei zhong (BL40) acupoints in both the groups. A brief cupping treatment was applied to the shen shu (BL23), qihai shu (BL24), dachang shu (BL25), guanyuan shu (BL26), and xiaochang shu (BL27) acupoints on both sides of the lower back in the cupping group. The numeric rating scale (NRS) was used to assess therapy efficacy for lower back pain (LBP) before and after treatment. Surface EMG data collected during symmetrical trunk flexion-extension movements were utilized to measure lower back muscle activity and the effectiveness of LBP therapy. RESULTS: There was no statistically significant difference (P= 0.63) in pain intensity between the two groups before and after treatment. There was a statistically significant difference (P= 0.04) between the control group and the cupping group in the sEMG topographic map parameter CoGx-To-Midline. CONCLUSION: This study established a connection between the action mechanism of flash cupping and enhanced horizontal synchronization of lower back muscular activity.


Acupuncture Therapy , Chronic Pain , Cupping Therapy , Electromyography , Low Back Pain , Humans , Low Back Pain/therapy , Low Back Pain/physiopathology , Low Back Pain/rehabilitation , Female , Male , Adult , Middle Aged , Cupping Therapy/methods , Chronic Pain/therapy , Chronic Pain/physiopathology , Acupuncture Therapy/methods , Treatment Outcome , Pain Measurement , Acupuncture Points
10.
Sci Total Environ ; 914: 169872, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38199360

Synthetic musks (SMs) have gained widespread utilization in daily consumer products, leading to their widespread dissemination in aquatic environments through various pathways. Over the past few decades, the production of SMs has consistently risen, prompting significant concern over their potential adverse impacts on ecosystems and human health. Although several studies have focused on the development of analytical techniques for detecting SMs in biological samples and cosmetic products, a comprehensive evaluation of their global distribution in diverse aquatic media and biological matrices remains lacking. This review aims to provide an up-to-date overview of the occurrence of SMs in both aquatic and various biological matrices, investigating their worldwide distribution trends, assessing their ecological toxicity, and comparing different methodologies for processing and analysis of SMs. The findings underscore the prevalence of polycyclic musks as predominant SMs, with consumption of various products in different countries leading to contrasting distribution of contaminants. Furthermore, the migration of SMs from sediments to the water phase is investigated, indicating the role of solid-phase reservoirs. Incomplete degradation of SMs in the environment could contribute to their accumulation in aquatic systems, impacting the growth and oxidative stress of aquatic organisms, and having a possibility of genotoxicity to them. Human exposure data highlight substantial risks for vulnerable populations such as pregnant women and infants. Moreover, contemporary methods for SMs analysis are presented in this review, particularly focusing on advancements made in the last five years. Finally, research enhancement and critical questions regarding the analysis of SMs are provided, offering suggestions for future research endeavors.


Cosmetics , Water Pollutants, Chemical , Pregnancy , Humans , Female , Ecosystem , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Aquatic Organisms
11.
J Hazard Mater ; 465: 133360, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38157815

BACKGROUND: Dibutyl phthalate (DBP), a commonly used plasticizer, has been found to be strongly linked to a consistently high prevalence of allergic diseases, particularly allergic asthma. Previous animal experiments have demonstrated that exposure to DBP can worsen asthma by triggering the production of calcitonin gene-related peptide (CGRP), a neuropeptide in the lung tissue. However, the precise neuroimmune mechanism and pathophysiology of DBP-exacerbated allergic asthma with the assistance of CGRP remain unclear. OBJECTIVE: The present study was to investigate the potential pathophysiological mechanism in DBP-exacerbated asthma from the perspective of neural-immune interactions. METHODS AND RESULTS: C57BL/6 mice were orally exposed to different concentrations (0.4, 4, 40 mg/kg) of DBP for 28 days. They were then sensitized with OVA and nebulized with OVA for 7 consecutive excitations. To investigate whether DBP exacerbates allergic asthma in OVA induced mice, we analyzed airway hyperresponsiveness and lung histopathology. To investigate the activation of JNC and TRPV1 neurons and the release of CGRP by JNC cells, we measured the levels of TRPV1 channels, calcium inward flow, and downstream neuropeptide CGRP. Results showed that TRPV1 expression, inward calcium flux, and CGRP levels were significantly elevated in the lung tissues of the 40DBP + OVA group, suggesting the release of CGRP by JNC cells. To counteract the detrimental effects of DBP mediated by CGRP, we employed olcegepant (also known as BIBN-4096), a CGRP receptor specific antagonist. Results revealed that 40DBP + OVA + olcegepant led to notable decreases in TRPV1, calcium inward flow, and CGRP expression in lung tissues compare with 40DBP + OVA, further supporting the efficacy of olcegepant. Additionally, we also conducted ILC2 flow sorting and observed that neuropeptide CGRP-activated ILC2 cells have a crucial role as key effector cells in DBP-induced neuroimmune positive feedback regulation. Finally, we examined the protein expression of CGRP, GATA3 and P-GATA3, and found that significant upregulations of CGRP and P-GATA3 in the 40DBP + OVA group, suggest that GATA3 acted as a key regulator of CGRP-activated ILC2. CONCLUSION: The aforementioned studies indicate that exposure to DBP can exacerbate allergic asthma, leading to airway inflammation. This exacerbation occurs through the activation of TRPV1 in JNC, resulting in the release of CGRP. The excessive release of CGRP further promotes the release of Th2 cytokines by inducing the activation of ILC2 through GATA phosphorylation. Consequently, this process contributes to the development of airway inflammation and allergic asthma. The increased production of Th2 cytokines also triggers the production of IgE, which interacts with FcεRI on JNC neurons, thereby mediating neuro-immune positive feedback regulation.


Asthma , Hypersensitivity , Neuropeptides , Mice , Animals , Calcitonin Gene-Related Peptide/toxicity , Calcitonin Gene-Related Peptide/metabolism , Immunity, Innate , Feedback , Dibutyl Phthalate/toxicity , Neuroimmunomodulation , Calcium , Lymphocytes , Mice, Inbred C57BL , Asthma/chemically induced , Asthma/metabolism , Lung/pathology , Cytokines , Neuropeptides/toxicity , Inflammation/pathology , Mice, Inbred BALB C , Ovalbumin
12.
Chem Biol Interact ; 385: 110732, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37788752

CC chemokine receptor 3 (CCR3) plays important roles in atopic dermatitis (AD) and other related allergic diseases. Activation of CCR3 receptor signaling pathways regulates the recruitment of eosinophils to related tissues, releasing inflammatory mediators and causing inflammatory responses. However, none of the known CCR3 antagonists exhibit promising efficacy in clinical trials. In this work, we sought new natural CCR3 antagonists for drug development. To construct a high-throughput screening model, we established a stably transfected CHO-K1-Gα15-CCR3 cell line, and receptor expression was demonstrated by real-time quantitative PCR, confocal detection and flow cytometry analysis. Then, we applied a label-free cell phenotyping technique to profile and deconvolute CCR3 target pathways in CHO-K1-Gα15-CCR3 cells and found that activation of CCR3 triggered the Gq-PLC-Ca2+ and MAPK-P38-ERK pathways. By in vitro and in silico experiments, we discovered a novel CCR3 antagonist emodin, with an IC50 value of 27.28 ± 1.71 µM out of 266 compounds that were identified in 15 traditional Chinese medicines used in the clinical treatment of skin diseases. Molecular docking graphically presented the binding mode of emodin on CCR3. This work reports a new approach for CCR3 antagonist screening and pathway detection and identifies a new antagonist that would benefit future drug development.


Biological Products , Emodin , Cricetinae , Animals , Receptors, CCR3/metabolism , Chemokine CCL11/metabolism , Molecular Docking Simulation , Biological Products/metabolism , CHO Cells , Eosinophils
13.
Sci Total Environ ; 903: 166352, 2023 Dec 10.
Article En | MEDLINE | ID: mdl-37598962

The occurrence of 25 multi-class pollutants comprising phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), and synthetic musks (SMs) were studied in PM2.5 samples collected at an industrial/commercial/residential/traffic mixed area in Shanghai during four seasons. During the whole period, a slight exceedance of the PM2.5 annual limit was observed, with an average of 36.8 µg/m3, and PAEs were the most predominant, accounting for >70 % of the studied organic pollutants in PM2.5, followed by PAHs and SMs. Statistically significant differences were observed for the concentrations of PM2.5, PAEs, PAHs, and SMs in winter and summer. This seasonal variation could be derived from anthropogenic activities and atmospheric dynamics. Principal component analysis (PCA) and PAHs ratios suggested a mixed source mainly derived from vehicle emissions and industrial processes. Moreover, gaseous pollutants were also accounted for, indicating the emission of PAHs might accompany the NO2 emission process. Finally, inhalation of PM2.5-bound organic pollutants for carcinogenic and non-carcinogenic risks were estimated as average values for each season, showing outside the safe levels in autumn and winter in some cases, suggesting that new policies should be to developed to reduce their emissions and protect human health in this area.

14.
Biol Pharm Bull ; 46(7): 929-938, 2023.
Article En | MEDLINE | ID: mdl-37394644

Chlorogenic acid (CGA), derived from dicotyledons and ferns, has been demonstrated with anti-inflammatory, anti-bacterial, and free radical-scavenging effects and can be used to treat pulmonary fibrosis (PF). However, the specific mechanism by which CGA treats PF needs to be further investigated. In this study, in vivo experiment was firstly performed to evaluate the effects of CGA on epithelial-mesenchymal transition (EMT) and autophagy in bleomycin (BLM)-induced PF mice. Then, the effects of CGA on EMT and autophagy was assessed using transforming growth factor beta (TGF-ß) 1-induced EMT model in vitro. Furthermore, autophagy inhibitor (3-methyladenine) was used to verify that the inhibitory mechanism of CGA on EMT was associated with activating autophagy. Our results found that 60 mg/kg of CGA treatment significantly ameliorated lung inflammation and fibrosis in mice with BLM-induced PF. Besides, CGA inhibited EMT and promoted autophagy in mice with PF. In vitro studies also demonstrated that 50 µM of CGA treatment inhibited EMT and induced autophagy related factors in TGF-ß1-induced EMT cell model. Moreover, the inhibitory effect of CGA on autophagy and EMT in vitro was abolished after using autophagy inhibitor. In conclusion, CGA could inhibit EMT to treat BLM-induced PF in mice through, activating autophagy.


Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Epithelial-Mesenchymal Transition , Transforming Growth Factor beta1/metabolism , Epithelial Cells , Autophagy , Bleomycin/adverse effects
15.
Proc Natl Acad Sci U S A ; 120(27): e2304306120, 2023 07 04.
Article En | MEDLINE | ID: mdl-37364127

Understanding the fundamental interaction of nanoparticles at plant interfaces is critical for reaching field-scale applications of nanotechnology-enabled plant agriculture, as the processes between nanoparticles and root interfaces such as root compartments and root exudates remain largely unclear. Here, using iron deficiency-induced plant chlorosis as an indicator phenotype, we evaluated the iron transport capacity of Fe3O4 nanoparticles coated with citrate (CA) or polyacrylic acid (PAA) in the plant rhizosphere. Both nanoparticles can be used as a regulator of plant hormones to promote root elongation, but they regulate iron deficiency in plant in distinctive ways. In acidic root exudates secreted by iron-deficient Arabidopsis thaliana, CA-coated particles released fivefold more soluble iron by binding to acidic exudates mainly through hydrogen bonds and van der Waals forces and thus, prevented iron chlorosis more effectively than PAA-coated particles. We demonstrate through roots of mutants and visualization of pH changes that acidification of root exudates primarily originates from root tips and the synergistic mode of nanoparticle uptake and transformation in different root compartments. The nanoparticles entered the roots mainly through the epidermis but were not affected by lateral roots or root hairs. Our results show that magnetic nanoparticles can be a sustainable source of iron for preventing leaf chlorosis and that nanoparticle surface coating regulates this process in distinctive ways. This information also serves as an urgently needed theoretical basis for guiding the application of nanomaterials in agriculture.


Anemia, Hypochromic , Arabidopsis , Iron Deficiencies , Magnetite Nanoparticles , Iron/metabolism , Biological Transport , Anemia, Hypochromic/metabolism , Arabidopsis/metabolism , Plant Roots/metabolism
16.
Endokrynol Pol ; 74(3): 271-276, 2023.
Article En | MEDLINE | ID: mdl-37155309

INTRODUCTION: Complement C1q tumour necrosis factor-related protein (CTRP-1) is a member of the C1q protein superfamily that plays a role in metabolism. This retrospective study aimed to investigate associations between CTRP-1 and metabolic syndrome (MetS). MATERIAL AND METHODS: This study screened subjects who had undergone regular health examinations at the Physical Examination Centre in the First People's Hospital of Yinchuan (the Second Affiliated Hospital of Ningxia Medical University) between November 2017 and September 2020. The total recruited population included 430 subjects who had undergone regular health examinations, excluding 112 subjects with high glycated haemoglobin (HbA1c ≥ 7). Finally, the data of 318 participants were further analysed. Non-diabetic subjects were divided into 2 groups: one with MetS and one without MetS (controls). Serum CTRP-1 concentrations were evaluated using an enzyme-linked immunosorbent assay. RESULTS: A total of 318 subjects were included, among whom 176 were diagnosed with MetS (MetS group) and 142 were not (non-MetS controls). The MetS group had significantly lower CTRP-1 levels than non-MetS controls (128.51 [111.56-143.05] vs. 138.82 [122.83-154.33] ng/mL, p < 0.001). Correlation analysis showed that serum CTRP-1 levels correlated negatively with body mass index (r = -0.161, p = 0.004), waist circumference (r = -0.191, p = 0.001), systolic blood pressure (r = -0.198, p < 0.001), diastolic blood pressure (r = -0.145, p = 0.010), fasting blood glucose (FBG) (r = -0.562, p < 0.001), fasting insulin (FIns) (r = -0.424, p < 0.001), and homeostasis model assessment of insulin resistance (HOMA-IR) (r = -0.541, p < 0.001). Multiple linear regression models showed that CTRP-1 levels were associated with MetS (p < 0.01). The lipid profile area under the curve (AUC) was comparable to those for FBG and FIns, and it was significantly higher than the AUCs for demographic variables. CONCLUSIONS: The results of this study suggest that the serum CTRP-1 level is negatively associated with MetS. CTRP-1 is a potential metabolism-related protein and is likely to be associated with lipid profiles in MetS.


Insulin Resistance , Metabolic Syndrome , Humans , Blood Glucose/metabolism , Body Mass Index , Complement C1 , Complement C1q , Lipids , Retrospective Studies , Tumor Necrosis Factors
17.
Open Med (Wars) ; 18(1): 20230658, 2023.
Article En | MEDLINE | ID: mdl-36874363

Vitamin D is a fat-soluble vitamin with multiple functions. However, the metabolism of people with different vitamin D concentrations is still unclear. Herein, we collected clinical data and analysed the serum metabolome of people with 25-hydroxyvitamin D (25[OH]D) ≥40 ng/mL (A), 30 ng/mL ≤25(OH)D <40 ng/mL (B) and 25(OH)D <30 ng/mL (C) by the ultra-high-performance liquid chromatography-tandem mass spectrometry method. We found that haemoglobin A1c, fasting blood glucose, fasting insulin, homeostasis model assessment of insulin resistance and thioredoxin interaction protein were enhanced, while HOMA-ß was reduced with the decrease of 25(OH)D concentration. In addition, people in the C group were diagnosed with prediabetes or diabetes. Metabolomics analysis showed that seven, thirty-four and nine differential metabolites were identified in the groups B vs A, C vs A and C vs B, respectively. Metabolites associated with cholesterol metabolism and bile acid biosynthesis, such as 7-ketolithocholic acid, 12-ketolithocholic acid, apocholic acid, N-arachidene glycine and d-mannose 6-phosphate, were significantly upregulated in the C group compared with the A or B groups. In conclusion, the disorder of vitamin D metabolism may be related to cholesterol metabolism and bile acid biosynthesis. This study provided a basis for exploring the possible mechanism leading to abnormal vitamin D metabolism.

18.
Org Biomol Chem ; 21(14): 2955-2959, 2023 Apr 05.
Article En | MEDLINE | ID: mdl-36935630

A simple, mild and efficient sequential KOtBu/FeCl3-catalyzed reductive phosphonylation of tertiary amides is herein described. This process first involved the KOtBu-catalyzed selective semi-reduction of tertiary amides to hemiaminal intermediates by TMDS (1,1,3,3-tetramethyldisiloxane) and then the FeCl3-catalyzed nucleophilic addition of the hemiaminal intermediates to phosphonates, which allowed the straightforward synthesis of α-amino phosphonates in moderate to good yields. This method applied well to amides and lactams that bear no strong acidic α-hydrogens, and various functional groups, including methoxy, methylthio, cyano, halogen, and heterocycles, could be tolerated.

19.
Rapid Commun Mass Spectrom ; 37(5): e9448, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36460301

RATIONALE: Proteomics and metabolomics are widely used in the study of diabetes, but rarely in prediabetes research. This study aimed to explore the mechanisms of early-onset type 2 diabetes mellitus (T2DM) by analyzing proteomic changes at different stages of glucose metabolism. METHODS: A total of 40 individuals undergoing routine physical health examinations between December 2016 and April 2017 were enrolled. Subjects were divided into four groups based on fasting blood glucose (FPG) levels: FPG < 5.6 mmol/L (group A); FPG ≥ 5.6 mmol/L and <6.1 mmol/L (group B); FPG ≥ 6.1 mmol/L and <7.0 mmol/L (group C); and FPG ≥ 7.0 mmol/L (group D). Each group had 10 cases. Sera from these 40 subjects were analyzed by label-free quantitative liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). LC/MS/MS with selected reaction monitoring mode was also performed for qualitative and quantitative metabolomics analysis. Differentially expressed proteins were identified. Partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to analyze the differentially expressed metabolites. RESULTS: A total of 202 differentially expressed proteins were screened and were identified as mainly secreted proteins. Comparing group A with group B, 32 proteins were up-regulated and 18 proteins were down-regulated. Comparing group A with group C, 24 proteins were up-regulated and 24 proteins were down-regulated. Comparing group A with group D, 19 proteins were up-regulated and 17 proteins were down-regulated. The fold change for up-regulated proteins was >1.2, p < 0.05, while the fold change for down-regulated proteins was <-1.2, p < 0.05. PLS-DA and OPLS-DA revealed 113 differentially expressed metabolites. Correlation analysis of differentially expressed metabolites of group A versus group B revealed that among the down-regulated differential proteins, transforming growth factor ß-induced protein ig-h3 correlated negatively with metabolite L-saccharin, while among the up-regulated differential proteins, apolipoprotein C-IV correlated negatively with metabolite 3-methyloxindole. Among all differentially expressed proteins, 19 proteins were associated with early initiation of chronic inflammation, including CD14 and CSF-1R, which were newly identified in the early onset of T2DM. CONCLUSIONS: Many proteins are differentially expressed between prediabetes and after T2DM diagnosis, although the specific mechanism remains unclear. The expression level of CD14 was significantly up-regulated and that of CSF-1R was significantly down-regulated when FPG was ≥5.6 mmol/L, suggesting that CD14 and CSF-1R may be important markers for early-onset T2DM and may serve as new targets for T2DM treatment.


Diabetes Mellitus, Type 2 , Prediabetic State , Humans , Diabetes Mellitus, Type 2/metabolism , Tandem Mass Spectrometry/methods , Proteomics/methods , Metabolomics/methods
20.
Environ Res ; 218: 115010, 2023 02 01.
Article En | MEDLINE | ID: mdl-36502911

To realize water and resource recovery from anaerobically digested manure centrate, the effect of combined coagulation and membrane treatment on contaminant residuals and membrane fouling was investigated. Two combined treatments were used to explore the properties of the retention of nutrients and the removal of risk pollutants. Behaviors and reversibility of membrane fouling after combined treatment were also examined. The result showed that the combined treatment significantly improved the water recovery rate by more than 60% and achieved better nutrient enrichment. Meanwhile, the combined treatment had certain removal effects on heavy metals and antibiotics, which promoted the safety of farmland utilization of anaerobically digested manure centrate. Moreover, the combined treatment reduced the membrane fouling by removing most suspended solids in the digested centrate. Combined coagulation and membrane treatment show great potential for practical applications in the treatment of anaerobically digested manure centrate due to the easy operation and excellent effect. This work provides a technical reference for the harmless and resource recovery of anaerobically digested manure centrate.


Manure , Metals, Heavy , Nutrients , Water
...