Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Int J Biol Macromol ; : 133191, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38880455

Abdominal hernia mesh is a common product which is used for prevention of abdominal adhesion and repairing abdominal wall defect. Currently, designing and preparing a novel bio-mesh material with prevention of adhesion, promoting repair and good biocompatibility simultaneously remain a great bottleneck. In this study, a novel siloxane-modified bacterial cellulose (BC) was designed and fabricated by chemical vapor deposition silylation, then the effects of different alkyl chains length of siloxane on surface properties and cell behaviors were explored. The effect of preventing of abdominal adhesion and repairing abdominal wall defect in rats with the siloxane-modified BC was evaluated. As the grafted alkyl chains become longer, the surface of the siloxane-modified BC can be transformed from super hydrophilic to hydrophobic. In vivo results showed that BC-C16 had good long-term anti-adhesion effect, good tissue adaptability and histocompatibility, which is expected to be used as a new anti-adhesion hernia repair material in clinic.

2.
Bioact Mater ; 39: 147-162, 2024 Sep.
Article En | MEDLINE | ID: mdl-38808158

Microcarrier applications have made great advances in tissue engineering in recent years, which can load cells, drugs, and bioactive factors. These microcarriers can be minimally injected into the defect to help reconstruct a good microenvironment for tissue repair. In order to achieve more ideal performance and face more complex tissue damage, an increasing amount of effort has been focused on microcarriers that can actively respond to external stimuli. These microcarriers have the functions of directional movement, targeted enrichment, material release control, and providing signals conducive to tissue repair. Given the high controllability and designability of magnetic and electroactive microcarriers, the research progress of these microcarriers is highlighted in this review. Their structure, function and applications, potential tissue repair mechanisms, and challenges are discussed. In summary, through the design with clinical translation ability, meaningful and comprehensive experimental characterization, and in-depth study and application of tissue repair mechanisms, stimuli-responsive microcarriers have great potential in tissue repair.

3.
Bioact Mater ; 39: 1-13, 2024 Sep.
Article En | MEDLINE | ID: mdl-38783924

Irregular articular cartilage injury is a common type of joint trauma, often resulting from intense impacts and other factors that lead to irregularly shaped wounds, the limited regenerative capacity of cartilage and the mismatched shape of the scaffods have contributed to unsatisfactory therapeutic outcomes. While injectable materials are a traditional solution to adapt to irregular cartilage defects, they have limitations, and injectable materials often lack the porous microstructures favorable for the rapid proliferation of cartilage cells. In this study, an injectable porous polyurethane scaffold named PU-BDO-Gelatin-Foam (PUBGF) was prepared. After injection into cartilage defects, PUBGF forms in situ at the site of the defect and exhibits a dynamic microstructure during the initial two weeks. This dynamic microstructure endows the scaffold with the ability to retain substances within its interior, thereby enhancing its capacity to promote chondrogenesis. Furthermore, the chondral repair efficacy of PUBGF was validated by directly injecting it into rat articular cartilage injury sites. The injectable PUBGF scaffold demonstrates a superior potential for promoting the repair of cartilage defects when compared to traditional porous polyurethane scaffolds. The substance retention ability of this injectable porous scaffold makes it a promising option for clinical applications.

4.
Mater Today Bio ; 26: 101042, 2024 Jun.
Article En | MEDLINE | ID: mdl-38660473

High oxidative stress and inflammatory cell infiltration are major causes of the persistent bone erosion and difficult tissue regeneration in rheumatoid arthritis (RA). Triptolide (TPL) has become a highly anticipated anti-rheumatic drug due to its excellent immunomodulatory and anti-inflammatory effects. However, the sudden drug accumulation caused by the binding of "stimulus-response" and "drug release" in a general smart delivery system is difficult to meet the shortcoming of extreme toxicity and the demand for long-term administration of TPL. Herein, we developed a dual dynamically cross-linked hydrogel (SPT@TPL), which demonstrated sensitive RA microenvironment regulation and microenvironment modulation-independent TPL release for 30 days. The abundant borate ester/tea polyphenol units in SPT@TPL possessed the capability to respond and regulate high reactive oxygen species (ROS) levels on-demand. Meanwhile, based on its dense dual crosslinked structure as well as the spontaneous healing behavior of numerous intermolecular hydrogen bonds formed after the breakage of borate ester, TPL could remain stable and slowly release under high ROS environments of RA, which dramatically reduced the risk of TPL exerting toxicity while maximized its long-term efficacy. Through the dual effects of ROS regulation and TPL sustained-release, SPT@TPL alleviated oxidative stress and reprogrammed macrophages into M2 phenotype, showing marked inhibition of inflammation and optimal regeneration of articular cartilage in RA rat model. In conclusion, this hydrogel platform with both microenvironment initiative regulation and TPL long-term sustained release provides a potential scheme for rheumatoid arthritis.

6.
ACS Appl Mater Interfaces ; 15(37): 43591-43606, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37681687

In the context of long-term antimicrobial treatment, the emergence of bacterial resistance poses a significant challenge. Therefore, there is a pressing need to develop novel antimicrobial materials and methods that can effectively and safely combat microbial infections. This study focuses on the synthesis of bacterial cellulose-polymethylene blue (BC-PMB) with integrated photodynamic and photoelectric antimicrobial properties. The polymerization of methyl blue (MB) onto bacterial celluloses (BC) was achieved, and through comprehensive computational analyses using density functional theory (DFT) and molecular dynamics simulations, it was confirmed that this polymerization greatly enhanced the binding efficiency between methylene blue and BC. Additionally, polymethylene blue (PMB) exhibited superior photoexcitation efficiency and conductivity compared to its precursor. When BC-PMB was exposed to a 30 mW 660 nm light source for 30 min, the material demonstrated a remarkable antimicrobial efficacy of 93.99% against Escherichia coli and 98.58% against Staphylococcus aureus. Furthermore, the synergistic effect of photodynamic and photoelectric antimicrobial mechanisms exhibited long-term inhibitory capabilities against bacterial biofilms.


Biofilms , Methylene Blue , Methylene Blue/pharmacology , Polymerization , Cell Aggregation , Cellulose/pharmacology , Escherichia coli
7.
Biomater Adv ; 154: 213642, 2023 Nov.
Article En | MEDLINE | ID: mdl-37776571

Natural polymers and minerals can be combined to simulate natural bone for repairing bone defects. However, bone defects are often irregular and pose challenges for their repair. To overcome these challenges, we prepared Chitosan/Polydopamine/Octacalcium phosphate (CS/PDA/OCP) microcarriers that mimic bone composition and micro-size to adapt to different bone defect defects. CS/PDA microspheres were prepared by emulsion phase separation method and PDA in-situ polymerization. Finally, it was used to adsorb and immobilize OCP particles, resulting in the preparation of CS/PDA/OCP composite microcarriers. The microcarriers maintain an interconnected porous structure and appropriate porosity, which promotes cell adhesion, proliferation, and nutrient exchange. Subsequently, the protein adsorption capacity, simulated degradation, cell adhesion and proliferation capacity of the composite microcarriers were investigated. Additionally, their ability to simulate mineralization and induce osteogenic differentiation of BMSCs was characterized. The results demonstrated that the composite microcarrier had good biocompatibility and was conducive to cell adhesion and proliferation. Moreover, ALP and ARS staining revealed that the addition of OCP significantly enhanced the osteogenic differentiation of BMSCs. These results indicate that the composite microcarrier has promising prospects for bone repair applications.


Chitosan , Osteogenesis , Chitosan/pharmacology , Chitosan/chemistry , Polymers/pharmacology , Stem Cells , Cell Differentiation
8.
Mater Today Bio ; 20: 100665, 2023 Jun.
Article En | MEDLINE | ID: mdl-37229214

Electret materials have attracted extensive attention because of their permanent polarization and electrostatic effect. However, it is one of problem that needs to be solved in biological application to manipulate the change of surface charge of electret by external stimulation. In this work, a drug-loaded electret with flexibility and no cytotoxicity was prepared under relatively mild conditions. The electret can release the charge through stress change and ultrasonic stimulation, and the drug release can be accurately controlled with the help of ultrasonic and electric double stimulation response. Here, the dipoles like particles of carnauba wax nanoparticles (nCW) are fixed in the matrix based on the interpenetrating polymer network structure, and "frozen" oriented dipolar particles that are treated by thermal polarization and cooled at high field strength. Subsequently, the charge density of the prepared composite electret can reach 101.1 â€‹nC/m2 at the initial stage of polarization and 21.1 â€‹nC/m2 after 3 weeks. In addition, the stimulated change of electret surface charge flow under cyclic tensile stress and cyclic compressive stress can generate a current of 0.187 â€‹nA and 0.105 â€‹nA at most. The ultrasonic stimulation results show that when the ultrasonic emission power was 90% (Pmax â€‹= â€‹1200 â€‹W), the current of 0.472 â€‹nA can be generated. Finally, the drug release characteristics and biocompatibility of the nCW composite electret containing curcumin were tested. The results showed that it not only had the ability to accurately control the release by ultrasound, but also triggered the electrical effect of the material. The prepared drug loaded composite bioelectret provides a new way for the construction, design and testing of the bioelectret. Its ultrasonic and electrical double stimulation response can be accurately controlled and released as required, and it has broad application prospects.

9.
Carbohydr Polym ; 314: 120906, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37173043

Bacterial cellulose (BC) has good network structure, biocompatibility, and excellent mechanical properties, and is widely used in the field of biomaterials. The controllable degradation of BC can further broaden its application. Oxidative modification and cellulases may endow BC with degradability, but these methods inevitably lead to the obvious reduction of its initial mechanical properties and uncontrolled degradation. In this paper, the controllable degradation of BC was realized for the first time by using a new controlled release structure that combines the immobilization and release of cellulase. The immobilized enzyme has higher stability and is gradually released in the simulated physiological environment, and its load can control the hydrolysis rate of BC well. Furthermore, the BC-based membrane prepared by this method retains the favorable physicochemical performance of the original BC, including flexibility and great biocompatibility, and holds good application prospects in drug control release or tissue repair.


Cellulase , Cellulose , Cellulose/chemistry , Cellulase/chemistry , Enzymes, Immobilized/chemistry , Biocompatible Materials , Wound Healing
10.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(1): 1-14, 2023 Jan 28.
Article En, Zh | MEDLINE | ID: mdl-36935172

OBJECTIVES: Ozone is widely applied to treat allergic skin diseases such as eczema, atopic dermatitis, and contact dermatitis. However, the specific mechanism remains unclear. This study aims to investigate the effects of ozonated oil on treating 2,4-dinitrochlorobenzene (DNCB)-induced allergic contact dermatitis (ACD) and the underling mechanisms. METHODS: Besides the blank control (Ctrl) group, all other mice were treated with DNCB to establish an ACD-like mouse model and were randomized into following groups: a model group, a basal oil group, an ozonated oil group, a FcεRI-overexpressed plasmid (FcεRI-OE) group, and a FcεRI empty plasmid (FcεRI-NC) group. The basal oil group and the ozonated oil group were treated with basal oil and ozonated oil, respectively. The FcεRI-OE group and the FcεRI-NC group were intradermally injected 25 µg FcεRI overexpression plasmid and 25 µg FcεRI empty plasmid when treating with ozonated oil, respectively. We recorded skin lesions daily and used reflectance confocal microscope (RCM) to evaluate thickness and inflammatory changes of skin lesions. Hematoxylin-eosin (HE) staining, real-time PCR, RNA-sequencing (RNA-seq), and immunohistochemistry were performed to detct and analyze the skin lesions. RESULTS: Ozonated oil significantly alleviated DNCB-induced ACD-like dermatitis and reduced the expressions of IFN-γ, IL-17A, IL-1ß, TNF-α, and other related inflammatory factors (all P<0.05). RNA-seq analysis revealed that ozonated oil significantly inhibited the activation of the DNCB-induced FcεRI/Syk signaling pathway, confirmed by real-time PCR and immunohistochemistry (all P<0.05). Compared with the ozonated oil group and the FcεRI-NC group, the mRNA expression levels of IFN-γ, IL-17A, IL-1ß, IL-6, TNF-α, and other inflammatory genes in the FcεRI-OE group were significantly increased (all P<0.05), and the mRNA and protein expression levels of FcεRI and Syk were significantly elevated in the FcεRI-OE group as well (all P<0.05). CONCLUSIONS: Ozonated oil significantly improves ACD-like dermatitis and alleviated DNCB-induced ACD-like dermatitis via inhibiting the FcεRI/Syk signaling pathway.


Dermatitis, Allergic Contact , Dermatitis, Atopic , Animals , Mice , Dinitrochlorobenzene/toxicity , Dinitrochlorobenzene/metabolism , Skin/metabolism , Cytokines/metabolism , Interleukin-17/metabolism , Tumor Necrosis Factor-alpha/metabolism , Dermatitis, Allergic Contact/drug therapy , Dermatitis, Allergic Contact/metabolism , Dermatitis, Allergic Contact/pathology , Dermatitis, Atopic/chemically induced , Signal Transduction , RNA, Messenger/metabolism , Mice, Inbred BALB C
11.
Int J Biol Macromol ; 236: 123943, 2023 May 01.
Article En | MEDLINE | ID: mdl-36889621

The disadvantages of mainstream therapies for endometrial injury are difficult to resolve, herein, we suggest an omnibearing improvement strategy by introducing an injectable multifunctional self-assembled dual-crosslinked sodium alginate/recombinant collagen hydrogel. The hydrogel possessed a reversible and dynamic double network based on dynamic covalent bonds and ionic interactions, which also contributed to excellent capability in viscosity and injectability. Moreover, it was also biodegradable with a suitable speed, giving off active ingredients during the degradation process and eventually disappearing completely. In vitro tests exhibited that the hydrogel was biocompatible and able to enhance endometrial stromal cells viability. These features synergistically promoted cell multiplication and maintenance of endometrial hormone homeostasis, which accelerated endometrial matrix regeneration and structural reconstruction after severe injury in vivo. Furthermore, we explored the interrelation between the hydrogel characteristics, endometrial structure, and postoperative uterine recovery, which would benefit deep research on regulation of uterine repair mechanism and optimization of hydrogel materials. The injectable hydrogel could achieve favourable therapeutic efficacy without the need of exogenous hormones or cells, which would be of clinical value in endometrium regeneration.


Alginates , Hydrogels , Female , Humans , Hydrogels/pharmacology , Hydrogels/chemistry , Alginates/chemistry , Endometrium , Collagen , Uterus
12.
ACS Nano ; 17(7): 6373-6386, 2023 04 11.
Article En | MEDLINE | ID: mdl-36961738

Magnetic biomaterials are widely used in the field of tissue engineering because of their functions such as drug delivery and targeted therapy. In this study, a magnetically responsive composite microcarrier was prepared through in situ polymerization of dopamine with Fe3O4 (MS) to form a complex. The magnetic composite microcarriers are paramagnetic and have certain magnetic responsiveness, suitable pore size porosity for cell growth, and good blood compatibility and biocompatibility. The bone marrow mesenchyml stem cells (BMSCs) were cultured on magnetic composite microcarriers, and a static magnetic field (SMF) was applied. The results showed that BMSCs adhered to the microcarriers proliferated under the action of horizontal and vertical forces. Magnetic composite microcarriers loaded with BMSCs were implanted into the SD rat model of cartilage defect, and a magnet was added to the operative side. After 12 weeks, cartilage regeneration was observed. The results of gross observation and histological immunostaining 1 month, 2 months, and 3 mounths after operation showed that the magnetic composite microcarriers of loaded cells promoted the early maturation of cartilage and collagen secretion, and the effect of cartilage repair was significantly better than that of the control group. Gait analysis showed that implanting magnetic composite microcarriers loaded with stem cells can reduce postoperative pain and promote limb recovery in SD rats. In conclusion, this study suggests that magnetic composite microcarriers are promising tissue-engineered scaffolds for cartilage regeneration and repair.


Cartilage, Articular , Mesenchymal Stem Cells , Rats , Animals , Rats, Sprague-Dawley , Tissue Scaffolds , Tissue Engineering/methods , Cell Proliferation , Magnetic Phenomena , Cells, Cultured
13.
Exp Dermatol ; 32(2): 135-145, 2023 02.
Article En | MEDLINE | ID: mdl-36251463

Psoriasis is a chronic recurrent inflammatory skin disease that is characterized by abnormal proliferation and differentiation of keratinocytes (KCs), angiogenesis and skin inflammation. Transfer RNA fragments (tRFs) are tRNA-derived small RNAs (tsRNAs), which possess regulatory functions in many diseases. Their potential roles in the pathological development of psoriasis have not been established. We first identified differentially expressed (DE) tRFs from psoriatic skin lesions using small RNA sequencing, and collected additional clinical samples for validation. Then, we investigated the function and mechanism of target tRFs in vitro. As a result of our investigation: we identified 234 DE transcripts in psoriatic skin lesions compared with normal controls. Further functional analysis showed the downregulation of tRF-Ile-AAT-019 in psoriatic lesions plays a critical role in pathogenesis since it could target 3'UTR of the serine protease serpin protein E1 (SERPINE1) gene. We next demonstrated that tRF-Ile-AAT-019 could suppress SERPINE1, thus leading to decreased expressions of vascular endothelial growth factor but increased expressions of keratinocytes (KCs) differentiation markers including Keratin1 and Involucrin. In conclusion, tRF-Ile-AAT-019 plays a protective role in the pathological progression of psoriasis via targeting SERPINE1, resulting in regulation of KCs differentiation and vascular proliferation biomarkers and providing a potential novel targeting pathway for the disease treatment.


Psoriasis , RNA , Humans , Vascular Endothelial Growth Factor A/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Down-Regulation
14.
Micromachines (Basel) ; 13(11)2022 Nov 11.
Article En | MEDLINE | ID: mdl-36422384

Electromagnetic field confinement is significant in enhancing light-matter interactions as well as in reducing footprints of photonic devices especially in Terahertz (THz). Polaritons offer a promising platform for the manipulation of light at the deep sub-wavelength scale. However, traditional THz polariton materials lack active tuning and anisotropic propagation simultaneously. In this paper, we design a graphene/α-MoO3 heterostructure and simulate polariton hybridization between isotropic graphene plasmon polaritons and anisotropic α-MoO3 phonon polaritons. The physical fundamentals for polariton hybridizations depend on the evanescent fields coupling originating from the constituent materials as well as the phase match condition, which can be severely affected by the α-MoO3 thickness and actively tuned by the gate voltages. Hybrid polaritons propagate with in-plane anisotropy that exhibit momentum dispersion characterized by elliptical, hyperboloidal and even flattened iso-frequency contours (IFCs) in the THz range. Our results provide a tunable and flexible anisotropic polariton platform for THz sensing, imaging, and modulation.

15.
Nanoscale ; 14(39): 14779-14788, 2022 Oct 13.
Article En | MEDLINE | ID: mdl-36178368

Developing low-cost, environmentally friendly and efficient non-precious metal electrocatalysts as alternatives to noble metals for the hydrogen evolution reaction (HER) is highly essential for the sustainable advancement of green hydrogen energy. Herein, a novel heterostructured Ni3P/Ni nanoparticle anchored in nitrogen-doped mesoporous carbon nanofibers (Ni3P/Ni@N-CNFs) is prepared by a facile solid-phase calcination protocol. The results demonstrated that benefiting from the intensive electronic coupling effect at the interface of the Ni3P/Ni heterostructure, the electron configuration of the Ni active site is optimized and thus the favorable HER activity. Furthermore, the N-doped carbon nanofiber scaffold with an extensive mesoporous structure endows Ni3P/Ni@N-CNFs with abundant electrochemically active sites together with excellent conductivity and stability, contributing to fast electron/mass transport. As expected, the resultant Ni3P/Ni@N-CNF electrocatalyst exhibited exceptional HER catalytic properties under universal pH conditions, driving a current density of 10 mA cm-2 at pretty low overpotentials of 121 mV, 145 mV and 187 mV in acidic, basic and neutral solutions, respectively, and retaining the catalytic stability for over 60 h. This intriguing work represents a fresh perspective for designing and exploiting highly advanced phosphide electrocatalysts for green hydrogen fuel production.

16.
Stem Cell Res Ther ; 13(1): 463, 2022 09 06.
Article En | MEDLINE | ID: mdl-36068613

BACKGROUND: Urethral stricture and reconstruction are one of the thorny difficult problems in the field of urology. The continuous development of tissue engineering and biomaterials has given new therapeutic thinking to this problem. Bacterial cellulose (BC) is an excellent biomaterial due to its accessibility and strong plasticity. Moreover, adipose-derived stem cells (ADSCs) could enhance their wound healing ability through directional modification. METHODS: First, we used physical drilling and sulfonation in this study to make BC more conducive to cell attachment and degradation. We tested the relevant mechanical properties of these materials. After that, we attached Fibroblast Growth Factor Receptor 2 (FGFR2)-modified ADSCs to the material to construct a urethra for tissue engineering. Afterward, we verified this finding in the male New Zealand rabbit model and carried out immunohistochemical and imaging examinations 1 and 3 months after the operation. At the same time, we detected the potential biological function of FGFR2 by bioinformatics and a cytokine chip. RESULTS: The results show that the composite has excellent repairability and that this ability is correlated with angiogenesis. The new composite in this study provides new insight and therapeutic methods for urethral reconstruction. The preliminary mechanism showed that FGFR2 could promote angiogenesis and tissue repair by promoting the secretion of Vascular Endothelial Growth Factor A (VEGFA) from ADSCs. CONCLUSIONS: Double-modified sulfonated bacterial cellulose scaffolds combined with FGFR2-modified ADSCs provide new sight and treatments for patients with urethral strictures.


Urethra , Vascular Endothelial Growth Factor A , Adipose Tissue/metabolism , Animals , Biocompatible Materials , Cellulose , Male , Rabbits , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Stem Cells/metabolism , Sulfates/metabolism , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Vascular Endothelial Growth Factor A/metabolism
17.
Molecules ; 27(18)2022 Sep 13.
Article En | MEDLINE | ID: mdl-36144696

Metal sulfide electrocatalyst is developed as a cost-effective and promising candidate for hydrogen evolution reaction (HER). In this work, we report a novel Mo-doped Cu2S self-supported electrocatalyst grown in situ on three-dimensional copper foam via a facile sulfurization treatment method. Interestingly, Mo-Cu2S nanosheet structure increases the electrochemically active area, and the large fleecy multilayer flower structure assembled by small nanosheet facilitates the flow of electrolyte in and out. More broadly, the introduction of Mo can adjust the electronic structure, significantly increase the volmer step rate, and accelerate the reaction kinetics. As compared to the pure Cu2S self-supported electrocatalyst, the Mo-Cu2S/CF show much better alkaline HER performance with lower overpotential (18 mV at 10 mA cm-2, 322 mV at 100 mA cm-2) and long-term durability. Our work constructs a novel copper based in-situ metal sulfide electrocatalysts and provides a new idea to adjust the morphology and electronic structure by doping for promoting HER performance.

18.
Bioact Mater ; 17: 248-260, 2022 Nov.
Article En | MEDLINE | ID: mdl-35386438

Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it "directional adhesion antibacterial effects". In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings.

19.
Bioact Mater ; 17: 471-487, 2022 Nov.
Article En | MEDLINE | ID: mdl-35415294

Effective strategy of hemostasis and promoting angiogenesis are becoming increasingly urgent in modern medicine due to millions of deaths caused by tissue damage and inflammation. The tissue adhesive has been favored as an optimistic and efficient path to stop bleeding, while, current adhesive presents limitations on wound care or potential degradation safety in clinical practice. Therefore, it is of great clinical significance to construct multifunctional wound adhesive to address the issues. Based on pro-angiogenic property of l-Arginine (L-Arg), in this study, the novel tissue adhesive (G-DLPUs) constructed by L-Arg-based degradable polyurethane (DLPU) and GelMA were prepared for wound care. After systematic characterization, we found that the G-DLPUs were endowed with excellent capability in shape-adaptive adhesion. Moreover, the L-Arg released and the generation of NO during degradation were verified which would enhance wound healing. Following the in vivo biocompatibility was verified, the hemostatic effect of the damaged organ was tested using a rat liver hemorrhage model, from which reveals that the G-DLPUs can reduce liver bleeding by nearly 75% and no obvious inflammatory cells observed around the tissue. Moreover, the wound care effect was confirmed in a mouse full-thickness skin defect model, showing that the hydrogel adhesive significantly improves the thickness of newly formed dermis and enhance vascularization (CD31 staining). In summary, the G-DLPUs are promising candidate to act as multifunctional wound care adhesive for both damaged organ and trauma.

20.
Carbohydr Polym ; 281: 119044, 2022 Apr 01.
Article En | MEDLINE | ID: mdl-35074117

Biocompatible and electroactive biomaterials have good potential on peripheral nerve repair. Bacterial cellulose (BC) shows excellent biocompatibility and is easy to modified, however it lacks electroactivity. In this study, biocompatible, conductive, and transparent bacterial cellulose/poly(3,4-ethylenedioxythiophene)-sulfonated nanofibers (BC/PEDOT-SNFs, BPS) composite membranes were prepared through the in-situ polymerization of PEDOT and the doping of SNFs. The polymerization of PEDOT endowed BC with conductivity, making the BPS membranes conducive to the adhesion and proliferation of adipose-derived stem cells (ADSCs). The conductivity of BPS was affected by the SNFs doped, and its value was up to 1.8 × 10-2 S/cm while the sulfonation degree of SNFs reached 93%. Furthermore, nerve conduits made of BPS were implanted in-vivo for 12 weeks, and it great improved the peripheral nerve repair effect. In summary, BPS membranes with excellent conductivity and multiple merits for cells loading, hold great application potential for peripheral nerve repair.


Nanofibers , Bridged Bicyclo Compounds, Heterocyclic , Cellulose , Peripheral Nerves , Polymers
...