Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Phys Chem Lett ; 15(26): 6852-6858, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38917304

RESUMEN

The emergent nanofluidic memristor provides a promising way of emulating neuromorphic functions in the brain. The conical-shaped nanopore showed promising features for a nanofluidic memristor, inspiring us to investigate the memory effects in asymmetrically charged nanochannels due to their high current rectification, which may result in good memory effects. Here, the memory effects of an asymmetrically charged nanofluidic channel were numerically simulated by Poisson-Nernst-Planck equations. Our results showed that the I-V curves represented a diode in low scanning frequency and then became a memristor and finally a resistor as frequency increased. We successfully replicated the learning behavior in our system with history-dependent ion redistribution in the nanochannel. Some critical factors were quantitatively analyzed for the memory effects including voltage amplitude, optimal frequency, and Dukhin number. Experimental characterizations were also carried out. Our findings are useful for the design of nanofluidic memristors by the principle of enrichment and depletion as well as the determination of the best memory settings.

2.
Natl Sci Rev ; 11(4): nwad216, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38487493

RESUMEN

The memristor is the building block of neuromorphic computing. We report a new type of nanofluidic memristor based on the principle of elastic strain on polymer nanopores. With nanoparticles absorbed at the wall of a single conical polymer nanopore, we find a pinched hysteresis of the current within a scanning frequency range of 0.01-0.1 Hz, switching to a diode below 0.01 Hz and a resistor above 0.1 Hz. We attribute the current hysteresis to the elastic strain at the tip side of the nanopore, caused by electrical force on the particles adsorbed at the inner wall surface. Our simulation and analytical equations match well with experimental results, with a phase diagram for predicting the system transitions. We demonstrate the plasticity of our nanofluidic memristor to be similar to a biological synapse. Our findings pave a new way for ionic neuromorphic computing using nanofluidic memristors.

3.
Electrophoresis ; 45(3-4): 244-265, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37948329

RESUMEN

Water flowing at a charged surface may produce electricity, known as streaming current/potentials, which may be traced back to the 19th century. However, due to the low gained power and efficiencies, the energy conversion from streaming current was far from usable. The emergence of micro/nanofluidic technology and nanomaterials significantly increases the power (density) and energy conversion efficiency. In this review, we conclude the fundamentals and recent progress in electrical double layers at the charged surface. We estimate the generated power by hydrodynamic energy dissipation in multi-scaling flows considering the viscous systems with slipping boundary and inertia systems. Then, we review the coupling of volume flow and current flow by the Onsager relation, as well as the figure of merits and efficiency. We summarize the state-of-the-art of electrokinetic energy conversions, including critical performance metrics such as efficiencies, power densities, and generated voltages in various systems. We discuss the advantages and possible constraints by the figure of merits, including single-phase flow and flying droplets.


Asunto(s)
Nanoestructuras , Agua , Electricidad
4.
Nano Lett ; 23(24): 11662-11668, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38064458

RESUMEN

The emergence of nanofluidic memristors has made a giant leap to mimic the neuromorphic functions of biological neurons. Here, we report neuromorphic signaling using Angstrom-scale funnel-shaped channels with poly-l-lysine (PLL) assembled at nano-openings. We found frequency-dependent current-voltage characteristics under sweeping voltage, which represents a diode in low frequencies, but it showed pinched current hysteresis as frequency increases. The current hysteresis is strongly dependent on pH values but weakly dependent on salt concentration. We attributed the current hysteresis to the entropy barrier of PLL molecules entering and exiting the Angstrom channels, resulting in reversible voltage-gated open-close state transitions. We successfully emulated the synaptic adaptation of Hebbian learning using voltage spikes and obtained a minimum energy consumption of 2-23 fJ in each spike per channel. Our findings pave a new way to mimic neuronal functions by Angstrom channels in low energy consumption.

5.
Eur J Med Chem ; 261: 115822, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37793325

RESUMEN

In order to overcome the current LNP-mRNA delivery system's weakness of poor stability and rapid degradation by nuclease, a novel chol-CGYKK molecule and then the new phospholipid liposome were designed and prepared. A solid phase approach synthesized CGYKK and connected it to cholesterol via a disulfide linker to form the desired chol-CGYKK. Four formulated samples with different proportions of excipients were prepared by freeze-drying cationic liposomes and packaged S-mRNA. The stability test shows that after six months at 4 °C, the encapsulation rate of this novel phospholipid liposome was still approximately 90%, which would significantly improve the storage and transportation requirement. Transmission electron microscopy, atomic force microscopy, and scanning electron microscopy indicated that the liposomes were spherical and uniformly dispersed. On comparing the levels of mRNA protein expression of the four formulated samples, the S protein vaccine expression of formulated sample 1 was the highest. Uptake by vector cells for formulated sample 1 showed that compared to Lipo2000, and the transfection efficiency was 66.7%. Furthermore, the safety evaluation of the CGYKK and mRNA vaccine liposomes revealed no toxic effects. The in vivo study demonstrated that this novel mRNA vaccine had an immune response. However, it was still not as good as the LNP group right now, but its excellent physicochemical properties, stability, in vitro biological activity, and in vivo efficacy against SARS-CoV-2 provided new strategies for developing the next generation of mRNA delivery system.


Asunto(s)
Péptidos de Penetración Celular , Liposomas , Liposomas/química , Esteroles , Transfección , Fosfolípidos
6.
NPJ Vaccines ; 8(1): 153, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813912

RESUMEN

Some studies have shown that lyophilization significantly improves the stability of mRNA-LNPs and enables long-term storage at 2-8 °C. However, there is little research on the lyophilization process of mRNA-lipid nanoparticles (LNPs). Most previous studies have used empirical lyophilization with only a single lyoprotectant, resulting in low lyophilization efficiency, often requiring 40-100 h. In the present study, an efficient lyophilization method suitable for mRNA-LNPs was designed and optimized, shortening the total length of the lyophilization process to 8-18 h, which significantly reduced energy consumption and production costs. When the mixed lyoprotectant composed of sucrose, trehalose, and mannitol was added to mRNA-LNPs, the eutectic point and collapse temperature of the system were increased. The lyophilized product had a ginger root-shaped rigid structure with large porosity, which tolerated rapid temperature increases and efficiently removed water. In addition, the lyophilized mRNA-LNPs rapidly rehydrated and had good particle size distribution, encapsulation rate, and mRNA integrity. The lyophilized mRNA-LNPs were stable at 2-8 °C, and they did not reduce immunogenicity in vivo or in vitro. Molecular dynamics simulation was used to compare the phospholipid molecular layer with the lyoprotectant in aqueous and anhydrous environments to elucidate the mechanism of lyophilization to improve the stability of mRNA-LNPs. This efficient lyophilization platform significantly improves the accessibility of mRNA-LNPs.

7.
Phytomedicine ; 119: 155004, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562091

RESUMEN

BACKGROUND: As a malignant digestive system tumor, pancreatic cancer has a high mortality rate. Xanthatin is a sesquiterpene lactone monomer compound purified from the traditional Chinese herb Xanthium strumarium L. It has been reported that Xanthatin exhibits inhibitory effects on various cancer cells in retinoblastoma, glioma, hepatoma, colon cancer, lung cancer, as well as breast cancer. However, in pancreatic cancer cells, only one report exists on the suppression of Prostaglandin E2 synthesis and the induction of caspase 3/7 activation in Xanthatin-treated MIA PaCa-2 cells, while systematic in vitro and in vivo investigations and related mechanisms have yet to be explored. PURPOSE: This research aims to explore the in vitro and in vivo effects of Xanthatin on pancreatic cancer and its molecular mechanisms. METHODS: The anticancer effects and mechanisms of Xanthatin on pancreatic cancer cells were assessed through employing cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, carboxyfluorescein diacetate succinimidyl ester (CFDA SE) cell proliferation assay, colony formation assay, wound healing assay, transwell assay, Annexin V-FITC/propidium iodide (PI) dual staining, Hoechst nuclear staining, Western blot analysis, phosphoproteomics, and reactive oxygen species (ROS) measurement. The in vivo anticancer effects of Xanthatin on pancreatic cancer cells were studied using a nude mouse model. RESULTS: The present study showed that Xanthatin can prevent the proliferation and metastasis of pancreatic cancer cells and trigger the exposure of phosphatidylserine (PS), chromatin condensation, and caspase activation, thereby inducing apoptosis. Phosphoproteomic analysis indicated that Xanthatin inhibits the phosphorylation of the proliferation-associated protein RBL1, and oxidative stress can lead to RBL1 dephosphorylation. Further investigation revealed that Xanthatin significantly upregulates ROS levels in pancreatic cancer cells, and the antioxidant N-acetylcysteine (NAC) can reverse Xanthatin-induced cell proliferation inhibition and apoptosis. In addition, Xanthatin can suppress pancreatic cancer cell growth in a xenograft nude mouse model with low toxicity to the mice. CONCLUSION: Xanthatin may inhibit the proliferation of pancreatic cancer cells and trigger apoptosis through the ROS/RBL1 signaling pathway.


Asunto(s)
Neoplasias Pancreáticas , Transducción de Señal , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Transformación Celular Neoplásica , Neoplasias Pancreáticas/tratamiento farmacológico
8.
Nanoscale ; 15(21): 9560-9566, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37190916

RESUMEN

When channels are scaled down to the size of hydrated ions, Coulomb interactions are enhanced in confinement, resulting in new phenomena. Herein, we found blockade of ionic transport in latent-track angstrom-scale channels governed by surface charge, fundamentally different from Coulomb blockade or Wien effects. The channels are non-conductive at low voltage, blocked by cations bound at the surface in confinement; however, they change to conductive with increasing voltage due to the release of bound ions. The increase in surface charge density gradually causes the conduction to be ohmic. Using Kramers' escape framework, we rationalized an analytical equation to describe the experimental results, uncovering new fundamental insights into ion transport in the smallest channels.

9.
Genes (Basel) ; 14(4)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37107608

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) are promising molecular diagnostic tools for rapidly and precisely elucidating the structure and function of genomes due to their high specificity, programmability, and multi-system compatibility in nucleic acid recognition. Multiple parameters limit the ability of a CRISPR/Cas system to detect DNA or RNA. Consequently, it must be used in conjunction with other nucleic acid amplification techniques or signal detection techniques, and the reaction components and reaction conditions should be modified and optimized to maximize the detection performance of the CRISPR/Cas system against various targets. As the field continues to develop, CRISPR/Cas systems have the potential to become an ultra-sensitive, convenient, and accurate biosensing platform for the detection of specific target sequences. The design of a molecular detection platform employing the CRISPR/Cas system is asserted on three primary strategies: (1) Performance optimization of the CRISPR/Cas system; (2) enhancement of the detection signal and its interpretation; and (3) compatibility with multiple reaction systems. This article focuses on the molecular characteristics and application value of the CRISPR/Cas system and reviews recent research progress and development direction from the perspectives of principle, performance, and method development challenges to provide a theoretical foundation for the development and application of the CRISPR/CAS system in molecular detection technology.


Asunto(s)
Sistemas CRISPR-Cas , ADN , Sistemas CRISPR-Cas/genética , ARN , Genoma
10.
J Microbiol Biotechnol ; 32(10): 1335-1343, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36224764

RESUMEN

COVID-19 is an emerging disease that poses a severe threat to global public health. As such, there is an urgent demand for vaccines against SARS-CoV-2, the virus that causes COVID-19. Here, we describe a virus-like nanoparticle candidate vaccine against SARS-CoV-2 produced by an E. coli expression system. The fusion protein of a truncated ORF2-encoded protein of aa 439~608 (p170) from hepatitis E virus CCJD-517 and the receptor-binding domain of the spike protein from SARS-CoV-2 were expressed, purified and characterized. The antigenicity and immunogenicity of p170-RBD were evaluated in vitro and in Kunming mice. Our investigation revealed that p170-RBD self-assembled into approximately 24 nm virus-like particles, which could bind to serum from vaccinated people (p < 0.001) and receptors on cells. Immunization with p170-RBD induced the titer of IgG antibody vaccine increased from 14 days post-immunization and was significantly enhanced after a booster immunization at 28 dpi, ultimately reaching a peak level on 42 dpi with a titer of 4.97 log10. Pseudovirus neutralization tests showed that the candidate vaccine induced a strong neutralizing antibody response in mice. In this research, we demonstrated that p170-RBD possesses strong antigenicity and immunogenicity and could be a potential candidate for use in future SARS-CoV-2 vaccine development.


Asunto(s)
COVID-19 , Virus de la Hepatitis E , Vacunas Virales , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteínas de la Cápside/genética , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Escherichia coli , Ratones Endogámicos BALB C , Proteínas Recombinantes/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Vacunas Virales/genética
11.
Front Microbiol ; 13: 1022403, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312936

RESUMEN

There is a lot of evidence that oral hypoglycemic drugs work by affecting gut microbes, but the key strains responsible for this effect are not well known. Huang-Qi-Ling-Hua-San (HQLHS), composed of Astragalus Membranaceus, Ganoderma lucidum, Inonotus obliquus, and Momordica charantia L., is a specially designed Chinese medicine formula to treat type 2 diabetes (T2D). In this study, a mouse model of T2D induced by high-fat diet and streptozotocin was used to explore the mechanism of HQLHS in improving hyperglycemia and hyperlipidemia through multiple rounds of animal experiments, such as HQLHS feeding, fecal microbiota transplantation (FMT), and live bacteria feeding, so as to explore the potential target intestinal flora in its hypoglycemic effect. Results show that such specific taxa as Bifidobacterium, Turicibacter, Alistipes, Romboutsia, and Christensenella were identified to be preferably enriched by HQLHS and then assumed to be the target microbes. Herein, FMT was used to test if the upregulated beneficial bacteria by HQLHS play a therapeutic role. The strain Christensenella minuta DSM 22607 and the strain Christensenella timonensis DSM 102800 were selected to test the beneficial effect of Christensenella taxa on T2D. Diabetic animals supplemented with these strains showed the improvement in blood glucose and lipid metabolism, the promotion of GLP-1 secretion, the increase in antioxidant capacity, the inhibition of hepatic gluconeogenesis, the suppression of intestinal glucose absorption, the enhancement of intestinal barrier, reduced LPS-induced inflammation, and the reduction of branched amino acids (BCAAs) content in the liver. Overall, these data demonstrate that Christensenella plays a beneficial role in T2D and is a target for the action of HQLHS therapy.

12.
Foods ; 11(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36010535

RESUMEN

As an effective tool for genetically modified organism (GMO) quantification in complex matrices, digital PCR (dPCR) has been widely used for the quantification of genetically modified (GM) canola events; however, little is known about the quantification of GM canola events using endogenous reference gene (ERG) characteristics by dPCR. To calculate and quantify the content of GM canola using endogenous reference gene (ERG) characteristics, the suitability of several ERGs of canola, such as cruciferin A (CruA), acetyl-CoA carboxylase (BnAcc), phosphoenolpyruvate carboxylase (PEP), cruciferin storage (BnC1), oleoyl hydrolase (Fat(A)), and high-mobility-group protein I/Y (HMG-I/Y), was investigated by droplet dPCR. BnAcc and BnC1 were more specific and stable in copy number in the genome of Brassica napus L. than the other genes. By performing intra-laboratory validation of the suitability of ERG characteristics for the quantification of GM canola events, the ddPCR methods for BnAcc and BnC1 were comprehensively demonstrated in dPCR assays. The methods could provide technical support for GM labeling regulations.

13.
Drug Dev Res ; 83(5): 1176-1189, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35466412

RESUMEN

Lung cancer is the cancer with the highest mortality, and non-small cell lung cancer (NSCLC) accounts for more than 80%. Tumor cells often have high reactive oxygen species (ROS) and antioxidant capacity. Redox balance is very important for tumor. The decline of antioxidant capacity and excessive ROS will induce the death of tumor cells. Destroying the redox balance of tumor cells is a promising tumor treatment strategy. Xanthatin is an active sesquiterpene lactone isolated from Xanthium strumarium L. We observed that xanthatin induced the up regulation of mitochondrial ROS and mitochondrial damage. Meanwhile, our results showed that xanthatin could inhibit system xc - and reduce glutathione (GSH) synthesis. Antioxidant GSH and N-acetyl- l-cysteine (NAC) significantly reversed cell proliferation inhibition and apoptosis induced by xanthatin. ß-Mercaptoethanol (ß-ME) which can avoid inhibition of system xc -  can also reverse the inhibition of cell proliferation induced by xanthatin, si-SLC7A11 was the opposite. Based on these results, we believe that the inhibition of xanthatin on the proliferation of NSCLC cells may be related to breaking the intracellular redox balance. Our data suggest that xanthatin is a promising antitumor candidate for the treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Acetilcisteína/farmacología , Antioxidantes/metabolismo , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Furanos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
14.
Eur J Med Chem ; 233: 114198, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35245829

RESUMEN

In order to improve the targeting efficiency and reduce anti-breast cancer therapeutic side effects, paclitaxel (PTX), crizotinib (CRI), and Bcl-xL siRNA were co-loaded in cationic liposomes (CTL), which exhibited a substantial enhanced permeability and retention effect (EPR effect) in breast cancer. CTL containing crizotinib and paclitaxel (CRI-PTX-CTL) had particle sizes of (138.63 ± 1.53) nm and zeta potentials of (50.90 ± 0.30) mV, respectively. It was spherical and uniformly dispersed under TEM. The in vitro release of CRI-PTX-CTL showed that the cumulative release rates of CRI and PTX within 12 h were 64.37% and 54.71%, and released from liposomes at the same time. At the cellular level, CRI and PTX were discovered to have synergistic effects. Cell uptake experiments demonstrated that CRI, PTX, and siRNA contained in CTL can be effectively taken up by MCF-7 cells. It was further proved that CTL-siRNA could effectively inhibit the expression of Bcl-xL in cells. CRI, PTX and Bcl-xL siRNA delivered by CTL showed enhanced cytotoxicity during in vitro experiments. Therefore, this study proved that the CRI-PTX-CTL-siRNA was a very promising delivery system for the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Liposomas , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Liposomas/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , ARN Interferente Pequeño
15.
Biomicrofluidics ; 16(2): 024104, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35310421

RESUMEN

New materials and fabrication technologies have significantly boosted the development of lab-on-a-chip technologies and functionalities. In this work, we developed a highly flexible elastomer microfluidic chip with a microchannel with a minimum width of ∼5 µm manufactured by imprinting onto an SU-8 template. We found that the deformation induced in the microstructures by manual stretching of the chip is higher than that for the chip itself, which we attribute to the stress concentration of microstructures. Here, we demonstrate that the elastomer enables the manipulation of single cells, such as dynamic trapping-releasing operations, by simply stretching and releasing the elastomer chip.

16.
Drug Dev Res ; 83(1): 119-130, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34180556

RESUMEN

Tumor cells exhibit higher glycolysis and rely on abnormal energy metabolism to produce ATP, which is essential for cell proliferation and migration. Abnormal energy metabolism inhibition is considered a promising tumor treatment strategy. Xanthatin is an active sesquiterpene lactone isolated from Xanthium strumarium L. This study evaluated the effect of xanthatin on the energy metabolism of human colon cancer cells. The results showed that xanthatin significantly inhibited the migration and invasion of human HT-29 and HCT-116 colon cancer cells. We found that xanthatin effectively reduced the production of ATP and promoted the accumulation of lactate. Xanthatin inhibited glycolysis which may be related to the reduction of glucose transporter 1 (Glut1) and monocarboxylate transporter 4 (MCT4) mRNA and protein levels. Concomitantly, xanthatin promoted complex II activity and oxidative phosphorylation (OXPHOS), resulting in mitochondrial damage and cell death in HT-29 cells. Furthermore, xanthatin inhibited the phosphorylation of mTOR, the phosphorylation of 4E-binding protein 1 (4E-BP1) and c-myc in HT-29 cells. Moreover, rapamycin, a mTOR inhibitor, could enhance the cytotoxicity effect in xanthatin treated HT-29 cells. Additionally, HT-29 cells transfected with si-mTOR aggravated xanthatin induced cell viability inhibition. Based on these results, we observed that the effect of xanthatin on energy metabolism may be related to its inhibition of the mTOR signaling pathway. Collectively, this study provides important insights into xanthatin's anticancer effect, which occurs by regulation of the energy metabolism of human colon cancer cells, and suggest that xanthatin has potential as a botanical drug against abnormal tumor energy metabolism.


Asunto(s)
Neoplasias del Colon , Serina-Treonina Quinasas TOR , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Metabolismo Energético , Furanos , Humanos , Transducción de Señal
17.
Transgenic Res ; 30(6): 727-737, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34460070

RESUMEN

Salt stress is an important abiotic factor that causes severe losses in soybean yield and quality. Therefore, breeding salt-tolerant soybean germplasm resources via genetic engineering has gained importance. Aspergillus glaucus, a halophilic fungus that exhibits significant tolerance to salt, carries the gene AgGlpF. In this study, we used the soybean cotyledonary node transformation method to transfer the AgGlpF gene into the genome of the soybean variety Williams 82 to generate salt-tolerant transgenic soybean varieties. The results of PCR, Southern blot, ddPCR, and RT-PCR indicated that AgGlpF was successfully integrated into the soybean genome and stably expressed. When subjected to salt stress conditions via treatment with 250 mM NaCl for 3 d, the transgenic soybean plants showed significant tolerance compared with wild-type plants, which exhibited withering symptoms and leaf abscission after 9 d. The results of this study indicated that the transfer of AgGlpF into the genome of soybean plants produced transgenic soybean with significantly improved salt stress tolerance.


Asunto(s)
Acuaporinas , Tolerancia a la Sal , Acuaporinas/genética , Acuaporinas/metabolismo , Aspergillus , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal/genética , Glycine max/genética , Glycine max/metabolismo
18.
Nano Lett ; 21(7): 2766-2772, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33710895

RESUMEN

Artificial nanopores have become a common toolbox in nanotechnologies, with dimension and geometry as predominant factors. Most fabrication technologies determine the pore size beforehand, but few exist that enable size-tuning post-manufacturing. In this work, we reported a type of ion track etched micro/nanopores on uniaxially drawn PET foils that enable irreversible thermal shrinkage, thus tuning the pore dimensions by increasing ambient temperatures. Importantly, we found a complex pore deformation process, which for a specific range of pore sizes and temperatures resulted in a peculiar "eye"-shaped appearance of the pore openings. We analyzed the mechanical stresses and theoretically illustrated the complex deformation process by a phase diagram. Temperature-induced dimensional tuning nanopores reduced maximally over 98% of ionic conduction in a single nanopore and 99% of pressure-driven flow in a pore-array membrane within few seconds at 90 °C, which is useful for temperature-modulated mass transport in nanotechnology and energy applications.

19.
Phys Rev Lett ; 125(1): 014501, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678629

RESUMEN

Nanofluidic systems show great promise for applications in energy conversion, where their performance can be enhanced by nanoscale liquid-solid slip. However, efficiency is also controlled by surface charge, which is known to reduce slip. Combining molecular dynamics simulations and analytical developments, we show the dramatic impact of surface charge distribution on the slip-charge coupling. Homogeneously charged graphene exhibits a very favorable slip-charge relation (rationalized with a new theoretical model correcting some weaknesses of the existing ones), leading to giant electrokinetic energy conversion. In contrast, slip is strongly affected on heterogeneously charged surfaces, due to the viscous drag induced by counterions trapped on the surface. In that case slip should depend on the detailed physical chemistry of the interface controlling the fraction of bound ions. Our numerical results and theoretical models provide new fundamental insight into the molecular mechanisms of liquid-solid slip, and practical guidelines for searching new functional interfaces with optimal energy conversion properties, e.g., for blue energy or waste heat harvesting.

20.
J Heart Lung Transplant ; 39(7): 707-718, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32334944

RESUMEN

BACKGROUND: Ischemic heart disease remains the leading cause of mortality and morbidity worldwide despite improved possibilities in medical care. Alongside interventional therapies, such as coronary artery bypass grafting, adjuvant tissue-engineered and cell-based treatments can provide regenerative improvement. Unfortunately, most of these advanced approaches require multiple lengthy and costly preparation stages without delivering significant clinical benefits. METHODS: We evaluated the effect of epicardially delivered minute pieces of atrial appendage tissue material, defined as atrial appendage micrografts (AAMs), in a mouse myocardial infarction model. An extracellular matrix patch was used to cover and fix the AAMs onto the surface of the infarcted heart. RESULTS: The matrix-covered AAMs salvaged the heart from the infarction-induced loss of functional myocardium and attenuated scarring. Site-selective proteomics of injured ischemic and uninjured distal myocardium from AAMs-treated and -untreated tissue sections revealed increased expression of several cardiac regeneration-associated proteins (i.e., periostin, transglutaminases, and glutathione peroxidases) and activation of pathways responsible for angiogenesis and cardiogenesis in relation to AAMs therapy. CONCLUSIONS: Epicardial delivery of AAMs encased in an extracellular matrix patch scaffold salvages functional cardiac tissue from ischemic injury and restricts fibrosis after myocardial infarction. Our results support the use of AAMs as tissue-based therapy adjuvants for salvaging the ischemic myocardium.


Asunto(s)
Apéndice Atrial/cirugía , Procedimientos Quirúrgicos Cardíacos/métodos , Infarto del Miocardio/cirugía , Pericardio/trasplante , Animales , Modelos Animales de Enfermedad , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...