Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 93
1.
Hum Cell ; 37(3): 648-665, 2024 May.
Article En | MEDLINE | ID: mdl-38388899

Human myeloid leukemia cells (such as K562) could be used for the study of erythropoiesis, and mature erythroid markers and globins could be induced during leukemia cell differentiation; however, the pathways involved are different compared with those of hematopoietic stem cells (HSCs).We identified the differentially expressed genes (DEGs) of K562 cells and HSCs associated with stem cells and erythroid differentiation. Furthermore, we showed that hemin-induced differentiation of K562 cells could be induced by serum starvation or treatment with the tyrosine kinase inhibitor saracatinib. However, erythroid differentiation of HSCs was inhibited by the deprivation of the important serum component erythropoietin (EPO) or treatment with saracatinib. Finally, we found that the mRNA expression of K562 cells and HSCs was different during saracatinib-treated erythroid differentiation, and the DEGs of K562 cells and HSCs associated with tyrosine-protein kinase were identified.These findings elucidated the cellular phenomenon of saracatinib induction during erythroid differentiation of K562 cells and HSCs, and the potential mechanism is the different mRNA expression profile of tyrosine-protein kinase in K562 cells and HSCs.


Benzodioxoles , Erythropoiesis , Hemin , Quinazolines , Humans , Hemin/pharmacology , K562 Cells , Erythropoiesis/genetics , Cell Differentiation/genetics , Hematopoietic Stem Cells , RNA, Messenger , Tyrosine , Protein Kinases
2.
BMC Med Genomics ; 17(1): 34, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38267993

INTRODUCTION: Dent disease type I is a rare X-linked recessive renal tubular disease resulting from pathogenic variants in the CLCN5 gene. Due to the rarity of Dent disease type I and the diversity of its phenotypes, its clinical diagnosis is complex and poses a challenge to clinicians. METHODS: A foetus and a child from a 36-year-old pregnant woman with a birth history of abnormal children were enrolled in this study. Pregnant women undergo amniocentesis for prenatal diagnosis at the gestational age of 12+ 3 weeks. Chromosomal microarray (CMA) analysis and whole-exome sequencing (WES) were employed to investigate the chromosomal copy number and single gene variants. Literature retrieval and data analysis were performed for genotype and phenotype collection analysis. RESULTS: No chromosomal abnormalities or CNVs were detected in the entire family through karyotype and familial CMA analyses. WES identified a nonsense pathogenic variant in CLCN5 of the X chromosome, c.1942 C > T (exon 11, NM_000084), which was inherited from his mother, who exhibited regular clinical features. CONCLUSION: This study suggests that children with low-molecular-weight proteinuria and hypercalciuria should undergo prompt genetic testing to exclude Dent disease.


Dent Disease , Adult , Female , Humans , Pregnancy , Chromosome Aberrations , Chromosomes, Human, X , Genetic Testing , Prenatal Diagnosis
3.
World J Surg Oncol ; 21(1): 307, 2023 Sep 26.
Article En | MEDLINE | ID: mdl-37752577

BACKGROUND: Frailty is considered a characteristic manifestation of physiological decline in multiple organ systems, which significantly increases the vulnerability of elderly individuals with colorectal cancer (CRC) and is associated with a poor prognosis. While studies have demonstrated that the 11-factor Modified Frailty Index (mFI-11) can effectively predict adverse outcomes following radical resection of CRC, there is a lack of research on the applicability of the 5-factor Modified Frailty Index (mFI-5) within this patient population. METHODS: In this retrospective analysis, we examined a cohort of CRC patients aged 65 years and above who had undergone radical resection. For each patient, we calculated their mFI-5 score, considering a score of ≥ 2 as an indication of frailty. We conducted univariate and multivariate analyses to assess the association between the mFI-5 and adverse outcomes as well as postoperative complications. RESULTS: Patients with an mFI-5 score ≥ 2 exhibited a significantly higher incidence of serious postoperative complications (53% vs. 30%; P = 0.001) and experienced a longer hospital stay [19.00 (15.00-24.50) vs. 17.00 (14.00-20.00); P < 0.05]. Notably, an mFI-5 score greater than 2 emerged as an independent risk factor for severe postoperative complications (odds ratio: 2.297; 95% confidence interval: 1.216 to 4.339; P = 0.01). Furthermore, the mFI-5 score displayed predictive capabilities for severe postoperative complications with an area under the receiver operating characteristic (ROC) curve of 0.629 (95% confidence interval: 0.551 to 0.707; P < 0.05). CONCLUSION: The mFI-5 demonstrates a high level of sensitivity in predicting serious complications, prolonged hospital stays, and mortality following radical resection of colorectal carcinoma. As a practical clinical assessment tool, the mFI-5 enables the identification of high-risk patients and facilitates preoperative optimization.


Colorectal Neoplasms , Frailty , Aged , Humans , Frailty/complications , Risk Assessment , Retrospective Studies , Risk Factors , Postoperative Complications/epidemiology , Colorectal Neoplasms/surgery , Colorectal Neoplasms/complications
4.
Brain ; 146(8): 3347-3363, 2023 08 01.
Article En | MEDLINE | ID: mdl-36869767

Recurrent proximal 16p11.2 deletion (16p11.2del) is a risk factor for diverse neurodevelopmental disorders with incomplete penetrance and variable expressivity. Although investigation with human induced pluripotent stem cell models has confirmed disruption of neuronal development in 16p11.2del neuronal cells, which genes are responsible for abnormal cellular phenotypes and what determines the penetrance of neurodevelopmental abnormalities are unknown. We performed haplotype phasing of the 16p11.2 region in a 16p11.2del neurodevelopmental disorders cohort and generated human induced pluripotent stem cells for two 16p11.2del families with distinct residual haplotypes and variable neurodevelopmental disorder phenotypes. Using transcriptomic profiles and cellular phenotypes of the human induced pluripotent stem cell-differentiated cortex neuronal cells, we revealed MAPK3 to be a contributor to dysfunction in multiple pathways related to early neuronal development, with altered soma and electrophysiological properties in mature neuronal cells. Notably, MAPK3 expression in 16p11.2del neuronal cells varied on the basis of a 132 kb 58 single nucleotide polymorphism (SNP) residual haplotype, with the version composed entirely of minor alleles associated with reduced MAPK3 expression. Ten SNPs on the residual haplotype were mapped to enhancers of MAPK3. We functionally validated six of these SNPs by luciferase assay, implicating them in the residual haplotype-specific differences in MAPK3 expression via cis-regulation. Finally, the analysis of three different cohorts of 16p11.2del subjects showed that this minor residual haplotype is associated with neurodevelopmental disorder phenotypes in 16p11.2del carriers.


Chromosome Deletion , Induced Pluripotent Stem Cells , Humans , Haplotypes , Phenotype , Cell Differentiation
5.
Aging (Albany NY) ; 15(7): 2503-2524, 2023 03 29.
Article En | MEDLINE | ID: mdl-36996493

BACKGROUND: Identification of effective biomarkers for cancer prognosis is a primary research challenge. Recently, several studies have reported the relationship between NCAPG and the occurrence of various tumors. However, none have combined meta-analytical and bioinformatics approaches to systematically assess the role of NCAPG in cancer. METHODS: We searched four databases, namely, PubMed, Web of Science, Embase, and the Cochrane Library, for relevant articles published before April 30, 2022. The overall hazard ratio or odds ratio and 95% confidence intervals were calculated to assess the relationship between NCAPG expression and cancer survival prognosis or clinical characteristics. Furthermore, the aforementioned results were validated using the GEPIA2, Kaplan-Meier plotter, and PrognoScan databases. RESULTS: The meta-analysis included eight studies with 1096 samples. The results showed that upregulation of NCAPG was correlated with poorer overall survival (hazard ratio = 2.90, 95% confidence interval = 2.06-4.10, P < 0.001) in the cancers included in the study. Subgroup analysis showed that in some cancers, upregulation of NCAPG was correlated with age, distant metastasis, lymph node metastasis, TNM stage, relapse, differentiation, clinical stage, and vascular invasion. These results were validated using the GEPIA2, UALCAN, and PrognoScan databases. We also explored the processes of NCAPG methylation and phosphorylation. CONCLUSION: Dysregulated NCAPG expression is associated with the clinical prognostic and pathological features of various cancers. Therefore, NCAPG can serve as a human cancer therapeutic target and a new potential prognostic biomarker.


Neoplasms , RNA, Long Noncoding , Humans , Prognosis , Biomarkers, Tumor/metabolism , RNA, Long Noncoding/analysis , Neoplasm Recurrence, Local , Neoplasms/metabolism , Computational Biology , Cell Cycle Proteins
6.
BMC Med Genomics ; 16(1): 57, 2023 03 16.
Article En | MEDLINE | ID: mdl-36927542

Inborn errors of metabolism (IEM) can lead to severe motor and neurological developmental disorders and even disability and death in children due to untimely treatment. In this study, we used tandem mass spectrometry (MS/MS) for primary screening and recall of those with positive primary screening for rescreening. Further diagnosis was based on biochemical tests, imaging and clinical presentation as well as accurate genetic testing using multi-gene panel with high-throughput sequencing of 130 IEM-related genes. The screening population was 16,207 newborns born between July 1, 2019, and December 31, 2021. Based on the results, 8 newborns were diagnosed with IEM, constituting a detection rate of 1:2,026. Phenylketonuria was the most common form of IEM. In addition, seven genes associated with IEM were detected in these eight patients. All eight patients received standardized treatment starting in the neonatal period, and the follow-up results showed good growth and development. Therefore, our study suggests that MS/MS rescreening for IEM pathogenic variants in high-risk areas, combined with a sequencing validation strategy, can be highly effective in the early detection of affected children. This strategy, combined with early intervention, can be effective in preventing neonatal morbidity and improving population quality.


Metabolism, Inborn Errors , Phenylketonurias , Child , Humans , Infant, Newborn , Tandem Mass Spectrometry , Retrospective Studies , Neonatal Screening/methods , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/therapy , Phenylketonurias/diagnosis , Phenylketonurias/genetics
7.
BMC Med Genomics ; 16(1): 3, 2023 01 09.
Article En | MEDLINE | ID: mdl-36624491

BACKGROUND: Pathogenic PAK1 variants were described to be causative of neurodevelopmental disorder with macrocephaly, seizures, and speech delay. Herein, we present a de novo PAK1 variant combine with a de novo terminal 1q microdeletion in a Chinese pediatric patient, aiming to provide more insights into the underlying genotype-phenotype relationship. METHODS: Enrolled in this study was a 6-year-old girl with clinical features of global developmental delay, severe intellectual disability, speech delay, and seizures from Quanzhou region of China. Karyotype and chromosomal microarray analysis (CMA) were performed to detect chromosome abnormalities in this family. Whole exome sequencing (WES) was performed to investigate additional genetic variants in this family. RESULTS: No chromosomal abnormalities were elicited from the entire family by karyotype analysis. Further familial CMA results revealed that the patient had a de novo 2.7-Mb microdeletion (arr[GRCh37] 1q44(246,454,321_249,224,684) × 1]) in 1q44 region, which contains 14 OMIM genes, but did not overlap the reported smallest region of overlap (SRO) responsible for the clinical features in 1q43q44 deletion syndrome. In addition, WES result demonstrated a de novo NM_002576: c.251C > G (p.T84R) variant in PAK1 gene in the patient, which was interpreted as a likely pathogenic variant. CONCLUSION: In this study, we identify a novel PAK1 variant associated with a terminal 1q microdeletion in a patient with neurodevelopmental disorder. In addition, we believe that the main clinical features may ascribe to the pathogenic variant in PAK1 gene in the patient.


Intellectual Disability , Language Development Disorders , Humans , Chromosome Aberrations , Intellectual Disability/genetics , Intellectual Disability/diagnosis , p21-Activated Kinases/genetics , Phenotype , Seizures/genetics , China
8.
Mol Genet Genomic Med ; 11(3): e2121, 2023 03.
Article En | MEDLINE | ID: mdl-36504312

BACKGROUND: Congenital hemidysplasia with ichthyosiform nevus and limb defects (CHILD) syndrome is a rare X-linked dominant, lethal male disorder caused by mutations to the NSDHL (NAD(P)H steroid dehydrogenase-like protein) gene. It primarily exhibits strictly unilateral congenital hemidysplasia with ichthyosiform erythroderma and ipsilateral limb defects in female individuals. METHODS: A Chinese couple suffering from recurrent spontaneous abortion in male fetuses was enrolled in this study. Chromosomal microarray analysis and whole-exome sequencing were performed for genetic etiological diagnosis. RESULTS: A 33-year-old pregnant woman with recurrent spontaneous abortion was experiencing her third pregnancy with a male embryo. In this pregnancy, a miscarriage occurred at a gestational age of 10+6  weeks with no copy number variants. However, a novel mutation c.790-6C>T in the NSDHL gene was observed in the fetus through whole-exome sequencing (WES). Parental verification indicated that the NSDHL gene variant was inherited from the mother. Additionally, the variant in the NSDHL gene was absent in her subsequent pregnancy with a female fetus. CONCLUSION: In this study, we detected c.790-6C>T, a novel variant in the NSDHL gene that results in recurrent miscarriage in males. Our study may broaden the scope of research on the NSDHL gene in CHILD syndrome and strengthens the application value of WES for the genetic etiological identification of recurrent miscarriage.


Abnormalities, Multiple , Abortion, Habitual , Nevus , Skin Neoplasms , Adult , Female , Humans , Infant , Male , Pregnancy , 3-Hydroxysteroid Dehydrogenases/genetics , Abnormalities, Multiple/genetics , Exome Sequencing , Mutation , Nevus/genetics , Fatal Outcome , Pregnancy Outcome
9.
Arch Pathol Lab Med ; 147(2): 208-214, 2023 02 01.
Article En | MEDLINE | ID: mdl-35639603

CONTEXT.­: Identification of rare thalassemia variants requires a combination of multiple diagnostic technologies. OBJECTIVE.­: To investigate a new approach of comprehensive analysis of thalassemia alleles based on third-generation sequencing (TGS) for identification of α- and ß-globin gene variants. DESIGN.­: Enrolled in this study were 70 suspected carriers of rare thalassemia variants. Routine gap-polymerase chain reaction and DNA sequencing were used to detect rare thalassemia variants, and TGS technology was performed to identify α- and ß-globin gene variants. RESULTS.­: Twenty-three cases that carried rare variants in α- and ß-globin genes were identified by the routine detection methods. TGS technology yielded a 7.14% (5 of 70) increment of rare α- and ß-globin gene variants as compared with the routine methods. Among them, the rare deletional genotype of -THAI was the most common variant. In addition, rare variants of CD15 (G>A) (HBA2:c.46G>A), CD117/118(+TCA) (HBA1:c.354_355insTCA), and ß-thalassemia 3.5-kilobase gene deletion were first identified in Fujian Province, China; to the best of our knowledge, this is the second report in the Chinese population. Moreover, HBA1:c.-24C>G, IVS-II-55 (G>T) (HBA1:c.300+55G>T) and hemoglobin (Hb) Maranon (HBA2:c.94A>G) were first identified in the Chinese population. We also identified rare Hb variants of HbC, HbG-Honolulu, Hb Miyashiro, and HbG-Coushatta in this study. CONCLUSIONS.­: TGS technology can effectively and accurately detect deletional and nondeletional thalassemia variants simultaneously in one experiment. Our study also demonstrated the application value of TGS-based comprehensive analysis of thalassemia alleles in the detection of rare thalassemia gene variants.


alpha-Globins , alpha-Thalassemia , beta-Globins , Humans , Alleles , alpha-Thalassemia/diagnosis , alpha-Thalassemia/genetics , alpha-Thalassemia/epidemiology , beta-Globins/genetics , East Asian People , Genotype , Glycated Hemoglobin , Mutation , alpha-Globins/genetics
10.
Front Cell Dev Biol ; 11: 1276890, 2023.
Article En | MEDLINE | ID: mdl-38333188

ß-thalassemia (ß-thal) is the most common monogenic disorder caused by various mutations in the human hemoglobin ß (HBB) gene and affecting millions of people worldwide. Electroporation of Cas9 and single-guide RNA (sgRNA)-ribonucleoprotein (RNP) complex-mediated gene targeting in patient-derived hematopoietic stem cells (HSCs), followed by autologous transplantation, holds the promise to cure patients lacking a compatible bone marrow donor. In this study, a universal gene correction method was devised to achieve in situ correction of most types of HBB mutations by using validated CRISPR/sgRNA-RNP complexes and recombinant adeno-associated viral 6 (rAAV6) donor-mediated homology-directed repair (HDR) in HSCs. The gene-edited HSCs exhibited multi-lineage formation abilities, and the expression of ß-globin transcripts was restored in differentiated erythroid cells. The method was applied to efficiently correct different mutations in ß-thal patient-derived HSCs, and the edited HSCs retained the ability to engraft into the bone marrow of immunodeficient NOD-scid-IL2Rg-/- (NSI) mice. This study provides an efficient and safe approach for targeting HSCs by HDR at the HBB locus, which provides a potential therapeutic approach for treating other types of monogenic diseases in patient-specific HSCs.

11.
Front Oncol ; 12: 992927, 2022.
Article En | MEDLINE | ID: mdl-36582785

Pancreatic cancer is a kind of aggressive tumor famous for its lethality and intractability, and pancreatic ductal adenocarcinoma is the most common type. Patients with pancreatic cancer often suffer a rapid loss of weight and abdominal neuropathic pain in their early stages and then go through cachexia in the advanced stage. These features of patients are considered to be related to metabolic reprogramming of pancreatic cancer and abundant nerve innervation responsible for the pain. With increasing literature certifying the relationship between nerves and pancreatic ductal adenocarcinoma (PDAC), more evidence point out that innervation's role is not limited to neuropathic pain but explore its anti/pro-tumor functions in PDAC, especially the neural-metabolic crosstalks. This review aims to unite pancreatic cancer's innervation and metabolic rearrangements with terminated published articles. Hopefully, this article could explore the pathogenesis of PDAC and further promote promising detecting or therapeutic measurements for PDAC according to the lavish innervation in PDAC.

12.
Stem Cells Int ; 2022: 3577015, 2022.
Article En | MEDLINE | ID: mdl-36110890

Extracellular vesicles (EVs) have been identified as cell-cell communication agents, and EVs derived from mesenchymal stem cells (MSCs) exhibit therapeutic effects similar to those of the cells of origin. Precipitation methods have been used extensively for EV harvests, such as UC- (ultracentrifugation-) or PEG- (polyethylene glycol-) based methods, and the difference in EVs derived from MSCs by UC and PEG is not fully understood. We harvested EVs from amniotic fluid MSCs (AF-MSCs) by UC- or PEG-based precipitation methods and conducted a comparison study of those EVs derived by the two methods: output, RNA, and protein expression of EVs and EV biological reaction in a THP-1-cell model of LPS induction, which was considered an infection model. There was no difference in morphology, size, or specific marker-positive ratio of PEG-EVs and UC-EVs, but PEG obtained more EV particles, protein, and RNA than the UC method. In our THP-1 model of LPS induction, MSC-EVs did not lead to a change in protein expression but inhibited the LPS-induced increase in cytokine secretion. UC-EVs were more effective for TNF-α inhibition, and PEG-EVs were more effective for IL10 inhibition. Thus, our findings provide evidence that PEG-based precipitation is a more efficient mesenchymal stem cell-extracellular vesicle-derived method than UC.

13.
Front Genet ; 13: 964098, 2022.
Article En | MEDLINE | ID: mdl-36092864

Background: Lethal multiple pterygium syndrome (LMPS) is a rare autosomal recessive inherited disorder typically characterized by intrauterine growth retardation, multiple pterygia, and flexion contractures. Case presentation: We herein report a Chinese case with a history of three adverse pregnancies demonstrating the same ultrasonic phenotypes, including increased nuchal translucency, edema, fetal neck cystoma, reduced movement, joint contractures, and other congenital features. Whole-exome sequencing (WES) revealed novel compound heterozygous variants in the CHRNA1 gene NM_000079.4: c.[1128delG (p.Pro377LeufsTer10)]; [505T>C (p.Trp169Arg)] in the recruited individual, and subsequent familial segregation showed that both parents transmitted their respective mutation. Conclusion: For the first time, we identified an association between the CHRNA1 gene and the recurrent lethal multiple pterygium syndrome (LMPS) in a Chinese family. This finding may also enrich the mutation spectrum of the CHRNA1 gene and promote the applications of WES technology in etiologic diagnosis of ultrasound anomalies in prenatal examination.

14.
BMC Med Genomics ; 15(1): 179, 2022 08 15.
Article En | MEDLINE | ID: mdl-35971149

Determining the associated relationship of genotype and phenomenon would benefit the understanding of disease and renew disease intervention means. 14,518 patients who underwent haemoglobin electrophoresis from June 2020 to December 2020 were enrolled in our study, and additional data including sex, age and routine blood examination results were collected. We focused on individuals with normal red blood cell indices and no common thalassemia pathogenic mutation and selected three groups for the following study: the control group (2.5% ≤ HbA2 ≤ 3.5%), the HbA2 under 2.5 group (HbA2 < 2.5%) and the HbA2 under 2.4 group (HbA2 < 2.4%). Four regions of ß-globin regulation were sequenced. Statistical analysis was conducted to compare the collected information of the three groups and the genotype distributions in the control group and sequenced group. The HbA2 under 2.5 group was characterized by a majority of females and lower red blood cell counts and haemoglobin compared with the control group. There were genotypes associated with the grouping as the T of rs12574989 and TTTAGC of the haplotype were significantly increased in the HbA2 under 2.4 group and CTTAGC was significantly decreased in the HbA2 under 2.4 group. This study demonstrated that the genotypes of the population associated with HbA2 were reduced in southern China.


beta-Globins , beta-Thalassemia , Female , Genotype , Haplotypes , Hemoglobin A2/analysis , Hemoglobin A2/genetics , Humans , Male , Mutation , beta-Globins/genetics , beta-Thalassemia/diagnosis , beta-Thalassemia/genetics
15.
Mol Cytogenet ; 15(1): 31, 2022 Jul 28.
Article En | MEDLINE | ID: mdl-35902965

BACKGROUND: Partial trisomy 13q is a less common chromosomal abnormality with a great clinical variability, among them, isolated partial trisomy 13q is extremely rare. Here, we report two new unrelated cases of partial trisomy 13q in Chinese families aiming to emphasize the genotype-phenotype correlation in partial trisomy 13q. METHODS: Enrolled in this study were two unrelated cases of partial 13q trisomy from two families in Quanzhou region South China. Karyotpe and single-nucleotide polymorphism (SNP) array analysis were employed to identify chromosome abnormalities and copy number variants in the families. RESULTS: A 72.9-Mb duplication in 13q14.11q34 region was identified using SNP array analysis in Patient 1 with an intellectual disability, developmental delay, seizures, gastric perforation, and other congenital malformations from a family with paternal inv(13)(p12q14.1). SNP array detection in Patient 2 revealed a 92.4-Mb duplication in 13q12.11q34 region combined with an 8.4-Mb deletion in Xq27.3q28 region with intellectual disability, developmental delay, cleft palate, and duplication of the cervix and the vagina. No chromosomal abnormality was elicited from the parents of Patient 2. CONCLUSIONS: In this study, we presented two new unrelated cases of partial trisomy 13q with variable features in Chinese population, which may enrich the spectrum of the phenotypes partial trisomy 13q and further confirm the genotype-phenotype correlation.

16.
Front Genet ; 13: 924573, 2022.
Article En | MEDLINE | ID: mdl-35865016

Background: Pathogenic mutations in the KCNH2 gene were associated with long QT syndrome 2 (LQT2), which typically manifest in a prolonged QT interval and may lead to recurrent syncopes, seizure, or sudden death. Limited reports indicated that the KCNH2 mutations would result in LQT2 combined with tetralogy of fallot. Our goal was to present an additional case of LQT2 combined with the tetralogy of fallot in a fetus with a novel KCNH2 mutation. Case presentation: Enrolled in this study was a 23-year-old pregnant woman from Quanzhou Fujian province, China. In her pregnancy, fetal ultrasound anomalies were identified, including tetralogy of fallot, coronary sinus enlargement, and persistent left superior vena cava. No chromosomal abnormality was detected by fetal karyotype analysis. However, 238.1-kb duplication in the 2q14.2 region containing the GLI2 gene was observed in the fetus by chromosomal array analysis, which was inherited from the mother with normal clinical features and interpreted as a variant of uncertain significance (VOUS). Furthermore, whole-exome sequencing (WES) detection identified a novel nonsense c.1907C > G (p.S636*) mutation in the KCNH2 gene in the fetus, and it was classified as a likely pathogenic variant, according to the ACMG guidelines. Parental verification analysis indicated that c.1907C > G (p.S636*) mutation was inherited from the mother. Conclusion: In this study, we believe that 2q14.2 duplication may not be the reason for fetal heart defects; moreover, we described an additional case with KCNH2 gene mutation, which may lead to LQTS and be associated with congenital heart defects. In addition, our study further confirms the application value of the WES technology in prenatal genetic etiology diagnosis of fetuses with structural anomalies and unexplained structural variants.

17.
Mol Cytogenet ; 15(1): 22, 2022 Jun 07.
Article En | MEDLINE | ID: mdl-35672790

BACKGROUND: Chromosome aberrations of 10p monosomy and 10q trisomy resulting from parental pericentric inversion 10 are extremely rare, and to date, very few reports have been published on the matter. CASE PRESENTATION: A 30-year-old pregnant woman with recurrent pregnancy loss is enrolled in this research. In this pregnancy, spontaneous abortion occurred in the first trimester of her pregnancy. Chromosomal microarray analysis of the abortion tissue showed a partial 10p monosomy (arr[GRCh37] 10p15.3p11.21(100,047_34,848,853) × 1) and a duplication of 10q (arr[GRCh37] 10q26.13q26.3(126,093,990_135,426,386) × 3). Further parental karyotype analysis indicated that the chromosomal abnormalities in the fetus was resulted from paternal pericenric inversion inv(10)(p11.21q26.13). This study presents the first case of a large deletion of 10p combined with 10q trisomy, resulting in pregnancy loss. Of these two manifestations, the large deletion of chromosome 10p may be the primary reason for spontaneous abortion in this subject. CONCLUSIONS: This study presents the first case of partial 10p monosomy associated with 10q trisomy in Chinese population. It provides more information on the chromosome aberration of 10p monosomy and 10q trisomy and further strengthens the application value of microarray in the molecular etiological diagnosis of recurrent spontaneous abortion.

18.
Front Genet ; 13: 829613, 2022.
Article En | MEDLINE | ID: mdl-35401667

Background: Oculofaciocardiodental (OFCD) syndrome is an X-linked dominant syndrome caused by BCOR variants, which manifests only in females and presumed leading to male lethality. Herein, we aim to present a prenatal diagnosis for OFCD syndrome associated with a novel hemizygous variant in BCOR gene. Case presentation: A 29-year-old pregnant woman from Quanzhou Fujian Province, China, with fetal ultrasound anomalies, was enrolled in this study. A normal 46, XY karyotype with no abnormalities was observed in the fetus detected on microarray. Furthermore, a whole-exome sequencing (WES) detection result demonstrated that a novel hemizygous variant of c.251dupT (p.N87Kfs*6) in the BCOR gene was identified in the fetus, which was a frameshift mutation and classified as a likely pathogenic variant, and may lead to OFCD syndrome according to the clinical feature of the fetus. In this case, male lethality had not occurred by the end of the second trimester, then termination of the pregnancy was conducted at a gestational age of 26 weeks. Sanger sequencing of parental samples revealed that the variant was maternally transmitted, which was consistent with the OFCD syndrome phenotypic features observed in her. Conclusions: In the study, we first present the affected male with a novel variant in BCOR that leads to the OFCD syndrome. Additionally, our study broadened the spectrum of BCOR results in the OFCD syndrome and provided the valuable references for prenatal genetic consultation.

19.
Front Pediatr ; 10: 816090, 2022.
Article En | MEDLINE | ID: mdl-35463886

Background: Osteogenesis imperfecta (OI) is a rare heterogeneous disorder typically featured by fragile bones and susceptibility to fracture. The aim of the present study was to explore the genetic etiology of familial recurrent OI and the genotype-phenotype correlation. Methods: Karyotyping, chromosomal microarray analysis, and whole-exome sequencing (WES) were performed to determine the genetic etiology of OI in the enrolled family. Western blotting analysis was carried out using the fetal skin tissue for type I collagen production analysis. Results: At the first pregnancy, a c.1777G>A mutation in the COL1A1 gene was detected in the fetus who exhibited skeletal dysplasia. In this second pregnancy, severe fetal skeletal dysplasia was also presented without significant chromosomal abnormality detected by karyotype and chromosomal microarray analysis in the fetus. Further WES results demonstrated a de novo missense mutation of c.1777G>A (p.G593S) in the fetus, which was classified as a pathogenic variant according to the ACMG guidelines. The recurrent mutation in the two fetuses hinted at the possible existence of gonadal mosaicism in the parents, while no mutation in the COL1A1 gene was identified in the DNA from the father's sperm. In addition, Western blot results demonstrated no reduced type I procollagen production in the affected fetus compared with the age-matched controls. Conclusions: To the best of our knowledge, this is the first study that identified a rare variant of c.1777G>A in the COL1A1 gene that led to recurrent OI in the Chinese population. Additionally, we believe that this rare variant of c.1777G>A in the COL1A1 gene will lead to OI type II. The results of the present study further verify the application value of WES in identifying fetuses with ultrasound anomalies.

20.
Front Genet ; 13: 792539, 2022.
Article En | MEDLINE | ID: mdl-35281846

Background: Male carriers of complex chromosomal rearrangements (CCRs) may have decreased fertility and usually present with azoospermia, oligospermia or teratospermia. Methods: High-resolution karyotype analysis using G-banding on peripheral blood lymphocytes was performed in an azoospermic male. Copy number variations (CNVs) were detected by chromosomal microarray analysis, and genetic variations were determined by long-read nanopore sequencing with Sanger sequencing for breakpoint confirmation. Results: The karyotype of the patient was 46,XY,t(4;21)(p11;p11),t(5;6;14)(p13q22;p22q22;q22), which did not involve CNVs with clinical significance. Twelve breakpoints in chromosomes 5, 6, and 14 were found by long-read nanopore sequencing. Reports on 17 males carrying CCRs with azoospermia were also reviewed. Conclusion: The extent of asynaptic regions in synaptonemal complexes during pachytene and the disruption of genes involved in male gametogenesis may cause azoospermia in CCR carriers.

...