Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
bioRxiv ; 2024 Mar 25.
Article En | MEDLINE | ID: mdl-37333088

Recent advances in single-cell epigenomic techniques have created a growing demand for scATAC-seq analysis. One key analysis task is to determine cell type identity based on the epigenetic data. We introduce scATAnno, a python package designed to automatically annotate scATAC-seq data using large-scale scATAC-seq reference atlases. This workflow generates the reference atlases from publicly available datasets enabling accurate cell type annotation by integrating query data with reference atlases, without the use of scRNA-seq data. To enhance annotation accuracy, we have incorporated KNN-based and weighted distance-based uncertainty scores to effectively detect cell populations within the query data that are distinct from all cell types in the reference data. We compare and benchmark scATAnno against 7 other published approaches for cell annotation and show superior performance in multiple data sets and metrics. We showcase the utility of scATAnno across multiple datasets, including peripheral blood mononuclear cell (PBMC), Triple Negative Breast Cancer (TNBC), and basal cell carcinoma (BCC), and demonstrate that scATAnno accurately annotates cell types across conditions. Overall, scATAnno is a useful tool for scATAC-seq reference building and cell type annotation in scATAC-seq data and can aid in the interpretation of new scATAC-seq datasets in complex biological systems.

2.
Nat Cell Biol ; 25(9): 1346-1358, 2023 09.
Article En | MEDLINE | ID: mdl-37591951

Small cell lung cancer (SCLC) exists broadly in four molecular subtypes: ASCL1, NEUROD1, POU2F3 and Inflammatory. Initially, SCLC subtypes were thought to be mutually exclusive, but recent evidence shows intra-tumoural subtype heterogeneity and plasticity between subtypes. Here, using a CRISPR-based autochthonous SCLC genetically engineered mouse model to study the consequences of KDM6A/UTX inactivation, we show that KDM6A inactivation induced plasticity from ASCL1 to NEUROD1 resulting in SCLC tumours that express both ASCL1 and NEUROD1. Mechanistically, KDM6A normally maintains an active chromatin state that favours the ASCL1 subtype with its loss decreasing H3K4me1 and increasing H3K27me3 at enhancers of neuroendocrine genes leading to a cell state that is primed for ASCL1-to-NEUROD1 subtype switching. This work identifies KDM6A as an epigenetic regulator that controls ASCL1 to NEUROD1 subtype plasticity and provides an autochthonous SCLC genetically engineered mouse model to model ASCL1 and NEUROD1 subtype heterogeneity and plasticity, which is found in 35-40% of human SCLCs.


Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Animals , Mice , Small Cell Lung Carcinoma/genetics , Histone Demethylases/genetics , Chromatin , Epigenomics , Lung Neoplasms/genetics
3.
Cancer Res ; 83(19): 3284-3304, 2023 10 02.
Article En | MEDLINE | ID: mdl-37450351

Immunotherapies have yet to demonstrate significant efficacy in the treatment of hormone receptor-positive (HR+) breast cancer. Given that endocrine therapy (ET) is the primary approach for treating HR+ breast cancer, we investigated the effects of ET on the tumor immune microenvironment (TME) in HR+ breast cancer. Spatial proteomics of primary HR+ breast cancer samples obtained at baseline and after ET from patients enrolled in a neoadjuvant clinical trial (NCT02764541) indicated that ET upregulated ß2-microglobulin and influenced the TME in a manner that promotes enhanced immunogenicity. To gain a deeper understanding of the underlying mechanisms, the intrinsic effects of ET on cancer cells were explored, which revealed that ET plays a crucial role in facilitating the chromatin binding of RelA, a key component of the NF-κB complex. Consequently, heightened NF-κB signaling enhanced the response to interferon-gamma, leading to the upregulation of ß2-microglobulin and other antigen presentation-related genes. Further, modulation of NF-κB signaling using a SMAC mimetic in conjunction with ET augmented T-cell migration and enhanced MHC-I-specific T-cell-mediated cytotoxicity. Remarkably, the combination of ET and SMAC mimetics, which also blocks prosurvival effects of NF-κB signaling through the degradation of inhibitors of apoptosis proteins, elicited tumor regression through cell autonomous mechanisms, providing additional support for their combined use in HR+ breast cancer. SIGNIFICANCE: Adding SMAC mimetics to endocrine therapy enhances tumor regression in a cell autonomous manner while increasing tumor immunogenicity, indicating that this combination could be an effective treatment for HR+ patients with breast cancer.


Breast Neoplasms , NF-kappa B , Humans , Female , NF-kappa B/metabolism , Intracellular Signaling Peptides and Proteins , Breast Neoplasms/pathology , Antigen Presentation , Apoptosis Regulatory Proteins , Apoptosis , Cell Line, Tumor , Mitochondrial Proteins/metabolism , Tumor Microenvironment
4.
Cancer Res ; 82(20): 3673-3686, 2022 10 17.
Article En | MEDLINE | ID: mdl-35950920

Most invasive lobular breast cancers (ILC) are of the luminal A subtype and are strongly hormone receptor-positive. Yet, ILC is relatively resistant to tamoxifen and associated with inferior long-term outcomes compared with invasive ductal cancers (IDC). In this study, we sought to gain mechanistic insights into these clinical findings that are not explained by the genetic landscape of ILC and to identify strategies to improve patient outcomes. A comprehensive analysis of the epigenome of ILC in preclinical models and clinical samples showed that, compared with IDC, ILC harbored a distinct chromatin state linked to gained recruitment of FOXA1, a lineage-defining pioneer transcription factor. This resulted in an ILC-unique FOXA1-estrogen receptor (ER) axis that promoted the transcription of genes associated with tumor progression and poor outcomes. The ILC-unique FOXA1-ER axis led to retained ER chromatin binding after tamoxifen treatment, which facilitated tamoxifen resistance while remaining strongly dependent on ER signaling. Mechanistically, gained FOXA1 binding was associated with the autoinduction of FOXA1 in ILC through an ILC-unique FOXA1 binding site. Targeted silencing of this regulatory site resulted in the disruption of the feed-forward loop and growth inhibition in ILC. In summary, ILC is characterized by a unique chromatin state and FOXA1-ER axis that is associated with tumor progression, offering a novel mechanism of tamoxifen resistance. These results underscore the importance of conducting clinical trials dedicated to patients with ILC in order to optimize treatments in this breast cancer subtype. SIGNIFICANCE: A unique FOXA1-ER axis in invasive lobular breast cancer promotes disease progression and tamoxifen resistance, highlighting a potential therapeutic avenue for clinical investigations dedicated to this disease. See related commentary by Blawski and Toska, p. 3668.


Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Lobular , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/drug therapy , Carcinoma, Lobular/genetics , Carcinoma, Lobular/metabolism , Chromatin/genetics , Drug Resistance, Neoplasm/genetics , Female , Humans , Prognosis , Receptors, Estrogen/metabolism , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
5.
Nat Commun ; 13(1): 2559, 2022 05 13.
Article En | MEDLINE | ID: mdl-35562350

c-MYC (MYC) is a major driver of prostate cancer tumorigenesis and progression. Although MYC is overexpressed in both early and metastatic disease and associated with poor survival, its impact on prostate transcriptional reprogramming remains elusive. We demonstrate that MYC overexpression significantly diminishes the androgen receptor (AR) transcriptional program (the set of genes directly targeted by the AR protein) in luminal prostate cells without altering AR expression. Analyses of clinical specimens reveal that concurrent low AR and high MYC transcriptional programs accelerate prostate cancer progression toward a metastatic, castration-resistant disease. Data integration of single-cell transcriptomics together with ChIP-seq uncover an increase in RNA polymerase II (Pol II) promoter-proximal pausing at AR-dependent genes following MYC overexpression without an accompanying deactivation of AR-bound enhancers. Altogether, our findings suggest that MYC overexpression antagonizes the canonical AR transcriptional program and contributes to prostate tumor initiation and progression by disrupting transcriptional pause release at AR-regulated genes.


Prostatic Neoplasms , Receptors, Androgen , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Genes, myc , Humans , Male , Prostate/pathology , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
6.
Blood Cancer Discov ; 3(2): 116-135, 2022 03 01.
Article En | MEDLINE | ID: mdl-35015684

Polycomb repressive epigenetic complexes are recurrently dysregulated in cancer. Unlike polycomb repressive complex 2 (PRC2), the role of PRC1 in oncogenesis and therapy resistance is not well-defined. Here, we demonstrate that highly recurrent mutations of the PRC1 subunits BCOR and BCORL1 in leukemia disrupt assembly of a noncanonical PRC1.1 complex, thereby selectively unlinking the RING-PCGF enzymatic core from the chromatin-targeting auxiliary subcomplex. As a result, BCOR-mutated PRC1.1 is localized to chromatin but lacks repressive activity, leading to epigenetic reprogramming and transcriptional activation at target loci. We define a set of functional targets that drive aberrant oncogenic signaling programs in PRC1.1-mutated cells and primary patient samples. Activation of these PRC1.1 targets in BCOR-mutated cells confers acquired resistance to treatment while sensitizing to targeted kinase inhibition. Our study thus reveals a novel epigenetic mechanism that explains PRC1.1 tumor-suppressive activity and identifies a therapeutic strategy in PRC1.1-mutated cancer. SIGNIFICANCE: We demonstrate that BCOR and BCORL1 mutations in leukemia unlink PRC1.1 repressive function from target genes, resulting in epigenetic reprogramming and activation of aberrant cell signaling programs that mediate treatment resistance. Our study provides mechanistic insights into the pathogenesis of PRC1.1-mutated leukemia that inform novel therapeutic approaches. This article is highlighted in the In This Issue feature, p. 85.


Carcinogenesis , Leukemia , Carcinogenesis/genetics , Cell Cycle Proteins/genetics , Chromatin , Epigenesis, Genetic/genetics , Humans , Leukemia/genetics , Mutation/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Signal Transduction/genetics
7.
Dev Cell ; 57(2): 212-227.e8, 2022 01 24.
Article En | MEDLINE | ID: mdl-34990589

The transcriptional co-activator YAP1 oncogene is the downstream effector of the Hippo pathway, which regulates tissue homeostasis, organ size, regeneration, and tumorigenesis. Multiple cancers are dependent on sustained expression of YAP1 for cell proliferation, survival, and tumorigenesis, but the molecular basis of this oncogene dependency is not well understood. To identify genes that can functionally substitute for YAP1, we performed a genome-scale genetic rescue screen in YAP1-dependent colon cancer cells expressing an inducible YAP1-specific shRNA. We found that the transcription factor PRDM14 rescued cell proliferation and tumorigenesis upon YAP1 suppression in YAP1-dependent cells, xenografts, and colon cancer organoids. YAP1 and PRDM14 individually activated the transcription of calmodulin 2 (CALM2) and a glucose transporter SLC2A1 upon YAP1 suppression, and CALM2 or SLC2A1 expression was required for the rescue of YAP1 suppression. Together, these findings implicate PRDM14-mediated transcriptional upregulation of CALM2 and SLC2A1 as key components of oncogenic YAP1 signaling and dependency.


Carcinogenesis/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Calmodulin/genetics , Calmodulin/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Colonic Neoplasms/genetics , DNA-Binding Proteins/genetics , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Glucose Transporter Type 1/genetics , Humans , Mice , Mice, Nude , Organoids , Phosphoproteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction/genetics , Transcription Factors/genetics , Transcriptional Activation , Xenograft Model Antitumor Assays , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/physiology
8.
Gut ; 71(4): 665-675, 2022 04.
Article En | MEDLINE | ID: mdl-33789967

OBJECTIVE: Oesophageal squamous cell carcinoma (OSCC), like other squamous carcinomas, harbour highly recurrent cell cycle pathway alterations, especially hyperactivation of the CCND1/CDK4/6 axis, raising the potential for use of existing CDK4/6 inhibitors in these cancers. Although CDK4/6 inhibition has shown striking success when combined with endocrine therapy in oestrogen receptor positive breast cancer, CDK4/6 inhibitor palbociclib monotherapy has not revealed evidence of efficacy to date in OSCC clinical studies. Herein, we sought to elucidate the identification of key dependencies in OSCC as a foundation for the selection of targets whose blockade could be combined with CDK4/6 inhibition. DESIGN: We combined large-scale genomic dependency and pharmaceutical screening datasets with preclinical cell line models, to identified potential combination therapies in squamous cell cancer. RESULTS: We identified sensitivity to inhibitors to the ERBB family of receptor kinases, results clearly extending beyond the previously described minority of tumours with EGFR amplification/dependence, specifically finding a subset of OSCCs with dual dependence on ERBB3 and ERBB2. Subsequently. we demonstrated marked efficacy of combined pan-ERBB and CDK4/6 inhibition in vitro and in vivo. Furthermore, we demonstrated that squamous lineage transcription factor KLF5 facilitated activation of ERBBs in OSCC. CONCLUSION: These results provide clear rationale for development of combined ERBB and CDK4/6 inhibition in these cancers and raises the potential for KLF5 expression as a candidate biomarker to guide the use of these agents. These data suggested that by combining existing Food and Drug Administration (FDA)-approved agents, we have the capacity to improve therapy for OSCC and other squamous cancer.


Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/drug therapy , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
9.
Gastroenterology ; 162(1): 209-222, 2022 01.
Article En | MEDLINE | ID: mdl-34571027

BACKGROUND AND AIMS: Genomic alterations that encourage stem cell activity and hinder proper maturation are central to the development of colorectal cancer (CRC). Key molecular mediators that promote these malignant properties require further elucidation to galvanize translational advances. We therefore aimed to characterize a key factor that blocks intestinal differentiation, define its transcriptional and epigenetic program, and provide preclinical evidence for therapeutic targeting in CRC. METHODS: Intestinal tissue from transgenic mice and patients were analyzed by means of histopathology and immunostaining. Human CRC cells and neoplastic murine organoids were genetically manipulated for functional studies. Gene expression profiling was obtained through RNA sequencing. Histone modifications and transcription factor binding were determined with the use of chromatin immunoprecipitation sequencing. RESULTS: We demonstrate that SRY-box transcription factor 9 (SOX9) promotes CRC by activating a stem cell-like program that hinders intestinal differentiation. Intestinal adenomas and colorectal adenocarcinomas from mouse models and patients demonstrate ectopic and elevated expression of SOX9. Functional experiments indicate a requirement for SOX9 in human CRC cell lines and engineered neoplastic organoids. Disrupting SOX9 activity impairs primary CRC tumor growth by inducing intestinal differentiation. By binding to genome wide enhancers, SOX9 directly activates genes associated with Paneth and stem cell activity, including prominin 1 (PROM1). SOX9 up-regulates PROM1 via a Wnt-responsive intronic enhancer. A pentaspan transmembrane protein, PROM1 uses its first intracellular domain to support stem cell signaling, at least in part through SOX9, reinforcing a PROM1-SOX9 positive feedback loop. CONCLUSIONS: These studies establish SOX9 as a central regulator of an enhancer-driven stem cell-like program and carry important implications for developing therapeutics directed at overcoming differentiation defects in CRC.


Cell Differentiation , Colorectal Neoplasms/metabolism , Enhancer Elements, Genetic , Neoplastic Stem Cells/metabolism , SOX9 Transcription Factor/metabolism , AC133 Antigen/genetics , AC133 Antigen/metabolism , Animals , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Genes, APC , HT29 Cells , Humans , Mice, Transgenic , Neoplastic Stem Cells/pathology , SOX9 Transcription Factor/genetics , Tumor Burden , Tumor Cells, Cultured , Wnt Signaling Pathway
10.
Nat Cell Biol ; 23(11): 1187-1198, 2021 11.
Article En | MEDLINE | ID: mdl-34737445

How cancer cells adapt to evade the therapeutic effects of drugs targeting oncogenic drivers is poorly understood. Here we report an epigenetic mechanism leading to the adaptive resistance of triple-negative breast cancer (TNBC) to fibroblast growth factor receptor (FGFR) inhibitors. Prolonged FGFR inhibition suppresses the function of BRG1-dependent chromatin remodelling, leading to an epigenetic state that derepresses YAP-associated enhancers. These chromatin changes induce the expression of several amino acid transporters, resulting in increased intracellular levels of specific amino acids that reactivate mTORC1. Consistent with this mechanism, addition of mTORC1 or YAP inhibitors to FGFR blockade synergistically attenuated the growth of TNBC patient-derived xenograft models. Collectively, these findings reveal a feedback loop involving an epigenetic state transition and metabolic reprogramming that leads to adaptive therapeutic resistance and provides potential therapeutic strategies to overcome this mechanism of resistance.


Antineoplastic Agents/pharmacology , Chromosomal Proteins, Non-Histone/metabolism , Drug Resistance, Neoplasm , Phenylurea Compounds/pharmacology , Pyrimidines/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/drug therapy , YAP-Signaling Proteins/metabolism , Amino Acids/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , Drug Resistance, Neoplasm/genetics , Drug Synergism , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Molecular Targeted Therapy , Multiprotein Complexes , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction , Transcription Factors/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays , YAP-Signaling Proteins/antagonists & inhibitors , YAP-Signaling Proteins/genetics
11.
Nat Commun ; 12(1): 5775, 2021 10 01.
Article En | MEDLINE | ID: mdl-34599169

Neuroendocrine carcinomas (NEC) are tumors expressing markers of neuronal differentiation that can arise at different anatomic sites but have strong histological and clinical similarities. Here we report the chromatin landscapes of a range of human NECs and show convergence to the activation of a common epigenetic program. With a particular focus on treatment emergent neuroendocrine prostate cancer (NEPC), we analyze cell lines, patient-derived xenograft (PDX) models and human clinical samples to show the existence of two distinct NEPC subtypes based on the expression of the neuronal transcription factors ASCL1 and NEUROD1. While in cell lines and PDX models these subtypes are mutually exclusive, single-cell analysis of human clinical samples exhibits a more complex tumor structure with subtypes coexisting as separate sub-populations within the same tumor. These tumor sub-populations differ genetically and epigenetically contributing to intra- and inter-tumoral heterogeneity in human metastases. Overall, our results provide a deeper understanding of the shared clinicopathological characteristics shown by NECs. Furthermore, the intratumoral heterogeneity of human NEPCs suggests the requirement of simultaneous targeting of coexisting tumor populations as a therapeutic strategy.


Carcinoma, Neuroendocrine/genetics , Prostatic Neoplasms/genetics , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , Male , Transcription Factors/genetics
12.
Genomics Proteomics Bioinformatics ; 19(4): 652-661, 2021 08.
Article En | MEDLINE | ID: mdl-34284136

Chromatin immunoprecipitation sequencing (ChIP-seq) and the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) have become essential technologies to effectively measure protein-DNA interactions and chromatin accessibility. However, there is a need for a scalable and reproducible pipeline that incorporates proper normalization between samples, correction of copy number variations, and integration of new downstream analysis tools. Here we present Containerized Bioinformatics workflow for Reproducible ChIP/ATAC-seq Analysis (CoBRA), a modularized computational workflow which quantifies ChIP-seq and ATAC-seq peak regions and performs unsupervised and supervised analyses. CoBRA provides a comprehensive state-of-the-art ChIP-seq and ATAC-seq analysis pipeline that can be used by scientists with limited computational experience. This enables researchers to gain rapid insight into protein-DNA interactions and chromatin accessibility through sample clustering, differential peak calling, motif enrichment, comparison of sites to a reference database, and pathway analysis. CoBRA is publicly available online at https://bitbucket.org/cfce/cobra.


Chromatin Immunoprecipitation Sequencing , Computational Biology , Chromatin/genetics , DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Workflow
13.
Nat Genet ; 53(6): 881-894, 2021 06.
Article En | MEDLINE | ID: mdl-33972779

Esophageal squamous cell carcinomas (ESCCs) harbor recurrent chromosome 3q amplifications that target the transcription factor SOX2. Beyond its role as an oncogene in ESCC, SOX2 acts in development of the squamous esophagus and maintenance of adult esophageal precursor cells. To compare Sox2 activity in normal and malignant tissue, we developed engineered murine esophageal organoids spanning normal esophagus to Sox2-induced squamous cell carcinoma and mapped Sox2 binding and the epigenetic and transcriptional landscape with evolution from normal to cancer. While oncogenic Sox2 largely maintains actions observed in normal tissue, Sox2 overexpression with p53 and p16 inactivation promotes chromatin remodeling and evolution of the Sox2 cistrome. With Klf5, oncogenic Sox2 acquires new binding sites and enhances activity of oncogenes such as Stat3. Moreover, oncogenic Sox2 activates endogenous retroviruses, inducing expression of double-stranded RNA and dependence on the RNA editing enzyme ADAR1. These data reveal SOX2 functions in ESCC, defining targetable vulnerabilities.


Adenosine Deaminase/metabolism , Epigenome , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , RNA-Binding Proteins/metabolism , SOXB1 Transcription Factors/metabolism , 3' Untranslated Regions/genetics , Animals , Base Sequence , Carcinogenesis/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Endogenous Retroviruses/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Interferons/metabolism , Introns/genetics , Kruppel-Like Transcription Factors/genetics , Mice , Organoids/pathology , Protein Binding , RNA, Double-Stranded/metabolism , SOXB1 Transcription Factors/genetics , Tumor Suppressor Protein p53/metabolism
14.
Cancer Discov ; 11(6): 1524-1541, 2021 06.
Article En | MEDLINE | ID: mdl-33589424

Immune checkpoint blockade (ICB) therapy revolutionized cancer treatment, but many patients with impaired MHC-I expression remain refractory. Here, we combined FACS-based genome-wide CRISPR screens with a data-mining approach to identify drugs that can upregulate MHC-I without inducing PD-L1. CRISPR screening identified TRAF3, a suppressor of the NFκB pathway, as a negative regulator of MHC-I but not PD-L1. The Traf3-knockout gene expression signature is associated with better survival in ICB-naïve patients with cancer and better ICB response. We then screened for drugs with similar transcriptional effects as this signature and identified Second Mitochondria-derived Activator of Caspase (SMAC) mimetics. We experimentally validated that the SMAC mimetic birinapant upregulates MHC-I, sensitizes cancer cells to T cell-dependent killing, and adds to ICB efficacy. Our findings provide preclinical rationale for treating tumors expressing low MHC-I expression with SMAC mimetics to enhance sensitivity to immunotherapy. The approach used in this study can be generalized to identify other drugs that enhance immunotherapy efficacy. SIGNIFICANCE: MHC-I loss or downregulation in cancer cells is a major mechanism of resistance to T cell-based immunotherapies. Our study reveals that birinapant may be used for patients with low baseline MHC-I to enhance ICB response. This represents promising immunotherapy opportunities given the biosafety profile of birinapant from multiple clinical trials.This article is highlighted in the In This Issue feature, p. 1307.


Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , B7-H1 Antigen/metabolism , Data Mining , Gene Expression Profiling , Histocompatibility Antigens Class I/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Tumor Microenvironment/drug effects
15.
Genome Biol ; 21(1): 198, 2020 08 07.
Article En | MEDLINE | ID: mdl-32767996

We present Model-based AnalysEs of Transcriptome and RegulOme (MAESTRO), a comprehensive open-source computational workflow ( http://github.com/liulab-dfci/MAESTRO ) for the integrative analyses of single-cell RNA-seq (scRNA-seq) and ATAC-seq (scATAC-seq) data from multiple platforms. MAESTRO provides functions for pre-processing, alignment, quality control, expression and chromatin accessibility quantification, clustering, differential analysis, and annotation. By modeling gene regulatory potential from chromatin accessibilities at the single-cell level, MAESTRO outperforms the existing methods for integrating the cell clusters between scRNA-seq and scATAC-seq. Furthermore, MAESTRO supports automatic cell-type annotation using predefined cell type marker genes and identifies driver regulators from differential scRNA-seq genes and scATAC-seq peaks.


Gene Expression Regulation , Models, Genetic , Single-Cell Analysis , Software , Transcriptome , Bone Marrow Cells/metabolism , Case-Control Studies , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Sequence Analysis, RNA , Tumor Microenvironment
16.
Nat Protoc ; 15(8): 2503-2518, 2020 08.
Article En | MEDLINE | ID: mdl-32591768

Fixed-tissue ChIP-seq for H3K27 acetylation (H3K27ac) profiling (FiTAc-seq) is an epigenetic method for profiling active enhancers and promoters in formalin-fixed, paraffin-embedded (FFPE) tissues. We previously developed a modified ChIP-seq protocol (FiT-seq) for chromatin profiling in FFPE. FiT-seq produces high-quality chromatin profiles particularly for methylated histone marks but is not optimized for H3K27ac profiling. FiTAc-seq is a modified protocol that replaces the proteinase K digestion applied in FiT-seq with extended heating at 65 °C in a higher concentration of detergent and a minimized sonication step, to produce robust genome-wide H3K27ac maps from clinical samples. FiTAc-seq generates high-quality enhancer landscapes and super-enhancer (SE) annotation in numerous archived FFPE samples from distinct tumor types. This approach will be of great interest for both basic and clinical researchers. The entire protocol from FFPE blocks to sequence-ready library can be accomplished within 4 d.


Chromatin Immunoprecipitation Sequencing/methods , Histones/chemistry , Histones/metabolism , Lysine/metabolism , Paraffin Embedding , Tissue Fixation , Acetylation , Animals , Liver/cytology , Mice
17.
J Exp Med ; 217(7)2020 07 06.
Article En | MEDLINE | ID: mdl-32374402

Cytotoxic T cells play a key role in adaptive immunity by killing infected or cancerous cells. While the transcriptional control of CD8 T cell differentiation and effector function following T cell activation has been extensively studied, little is known about epigenetic regulation of these processes. Here we show that the histone deacetylase HDAC3 inhibits CD8 T cell cytotoxicity early during activation and is required for persistence of activated CD8 T cells following resolution of an acute infection. Mechanistically, HDAC3 inhibits gene programs associated with cytotoxicity and effector differentiation of CD8 T cells including genes encoding essential cytotoxicity proteins and key transcription factors. These data identify HDAC3 as an epigenetic regulator of the CD8 T cell cytotoxicity program.


CD8-Positive T-Lymphocytes/immunology , Epigenesis, Genetic , Histone Deacetylases/metabolism , T-Lymphocytes, Cytotoxic , Acetylation/drug effects , Acrylamides/pharmacology , Animals , Antigens/metabolism , Base Sequence , CD8-Positive T-Lymphocytes/drug effects , Core Binding Factor Alpha 3 Subunit/metabolism , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/deficiency , Histones/metabolism , Lymph Nodes/drug effects , Lymph Nodes/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Lymphocytic choriomeningitis virus/physiology , Lysine/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Phenylenediamines/pharmacology , Positive Regulatory Domain I-Binding Factor 1/metabolism , T-Lymphocytes, Cytotoxic/drug effects , Transcription, Genetic/drug effects
19.
Nat Commun ; 11(1): 1406, 2020 03 16.
Article En | MEDLINE | ID: mdl-32179749

Chromatin organization is a highly orchestrated process that influences gene expression, in part by modulating access of regulatory factors to DNA and nucleosomes. Here, we report that the chromatin accessibility regulator HMGN1, a target of recurrent DNA copy gains in leukemia, controls myeloid differentiation. HMGN1 amplification is associated with increased accessibility, expression, and histone H3K27 acetylation of loci important for hematopoietic stem cells (HSCs) and leukemia, such as HoxA cluster genes. In vivo, HMGN1 overexpression is linked to decreased quiescence and increased HSC activity in bone marrow transplantation. HMGN1 overexpression also cooperates with the AML-ETO9a fusion oncoprotein to impair myeloid differentiation and enhance leukemia stem cell (LSC) activity. Inhibition of histone acetyltransferases CBP/p300 relieves the HMGN1-associated differentiation block. These data nominate factors that modulate chromatin accessibility as regulators of HSCs and LSCs, and suggest that targeting HMGN1 or its downstream effects on histone acetylation could be therapeutically active in AML.


Chromatin/metabolism , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Acetylation , Animals , Cell Differentiation , Cell Survival , Female , HMGN1 Protein/genetics , HMGN1 Protein/metabolism , Hematopoietic Stem Cells/cytology , Histones/genetics , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
20.
Cancer Cell ; 37(1): 104-122.e12, 2020 01 13.
Article En | MEDLINE | ID: mdl-31935369

Eradicating tumor dormancy that develops following epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment of EGFR-mutant non-small cell lung cancer, is an attractive therapeutic strategy but the mechanisms governing this process are poorly understood. Blockade of ERK1/2 reactivation following EGFR TKI treatment by combined EGFR/MEK inhibition uncovers cells that survive by entering a senescence-like dormant state characterized by high YAP/TEAD activity. YAP/TEAD engage the epithelial-to-mesenchymal transition transcription factor SLUG to directly repress pro-apoptotic BMF, limiting drug-induced apoptosis. Pharmacological co-inhibition of YAP and TEAD, or genetic deletion of YAP1, all deplete dormant cells by enhancing EGFR/MEK inhibition-induced apoptosis. Enhancing the initial efficacy of targeted therapies could ultimately lead to prolonged treatment responses in cancer patients.


Adaptor Proteins, Signal Transducing/metabolism , Apoptosis , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Transcription Factors/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cellular Senescence , ErbB Receptors/metabolism , Female , Gene Deletion , Humans , Lung Neoplasms/pathology , MAP Kinase Kinase 1/metabolism , Male , Mice , Mice, Knockout , Mutation , Signal Transduction , Transcription, Genetic , YAP-Signaling Proteins
...