Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Lett ; 398: 69-81, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909920

RESUMEN

Sodium para-aminosalicylic acid (PAS-Na) treatment for manganese (Mn) intoxication has shown efficacy in experimental and clinical studies, giving rise to additional studies on its efficacy for lead (Pb) neurotoxicity and its associated mechanisms of neuroprotection. The difference between PAS-Na and other metal complexing agents, such as edetate calcium sodium (CaNa2-EDTA), is firstly that PAS-Na can readily pass through the blood-brain barrier (BBB), and complex and facilitate the excretion of manganese and lead. Secondly, PAS-Na has anti-inflammatory effects. Recent studies have broadened the understanding on the mechanisms associated with efficacy of PAS-Na. The latter has been shown to modulate multifarious manganese- and lead- induced neurotoxicity, via its anti-apoptotic and anti-inflammatory effects, as well as its ability to inhibit pyroptosis, and regulate abnormal autophagic processes. These observations provide novel scientific bases and new concepts for the treatment of lead, mercury, copper, thallium, as well as other toxic encephalopathies, and implicate PAS-Na as a compound with greater prospects for clinical medical application.

2.
Basic Clin Pharmacol Toxicol ; 135(1): 81-97, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38780039

RESUMEN

We established experimental models of manganese (Mn) and iron (Fe) exposure in vitro and in vivo, and addressed the effects of manganese and iron combined exposure on the synaptic function of pheochromocytoma derived cell line 12 (PC12) cells and rat cortex, respectively. We investigated the protective effect of sodium para-aminosalicylate (PAS-Na) on manganese and iron combined neurotoxicity, providing a scientific basis for the prevention and treatment of ferromanganese combined neurotoxicity. Western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were performed to detect the expression levels of protein and mRNA related to synaptic damage. Y-maze novelty test and balance beam test were used to evaluate the motor and cognitive function of rats. Haematoxylin and eosin (H&E) and Nissl staining were performed to observe the cortical damage of rats. The results showed that the combined exposure of Mn and Fe in rats led to a synergistic effect, attenuating growth and development, and altering learning and memory as well as motor function. The combination of Mn and Fe also caused damage to the synaptic structure of PC12 cells, which is manifested as swelling of dendrites and axon terminals, and even lead to cell death. PAS-Na displayed some antagonistic effects against the Mn- and Fe-induced synaptic structural damage, growth, learning and memory impairment.


Asunto(s)
Ácido Aminosalicílico , Manganeso , Sinapsis , Animales , Ratas , Células PC12 , Sinapsis/efectos de los fármacos , Masculino , Ácido Aminosalicílico/farmacología , Manganeso/toxicidad , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Corteza Cerebral/metabolismo , Ratas Sprague-Dawley , Hierro/metabolismo , Fármacos Neuroprotectores/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Síndromes de Neurotoxicidad/prevención & control , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/patología , Modelos Animales de Enfermedad
4.
Biol Trace Elem Res ; 202(5): 2241-2252, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37500820

RESUMEN

The aim of study was to address the effects of manganese and iron, alone and in combination, on apoptosis of BV2 microglia cells, and to determine if combined exposure to these metals augments their individual toxicity. We used a murine microglial BV2 cell line. Cell cytotoxicity was analyzed by propidium iodide (PI) exclusion assay. Cell ROS production was analyzed by 2', 7'-dichlorofluorescin diacetate (DCFH-DA) probe staining. Pro-inflammatory cytokine production was monitored by ELISA. Cell apoptosis was analyzed by PE Annexin V/7-AAD staining. Mitochondrial membrane integrity was analyzed by flow cytometry. We used immunoblotting to analyze the effect of manganese, iron alone, or their combined exposure on the activation of caspase9, P53, Bax, and Bcl2 apoptosis signaling pathways. Caspase3 activity was determined using a Colorimetric. Manganese, iron, and their combined exposure for 24 h induced the activation of BV2 microglia cells and increased ROS production and the expression of the inflammatory cytokines, IL-1ß and TNF-α. And we also found that the apoptosis rate increased, mitochondrial membrane potential decreased, apoptosis-related proteins caspase9, P53, Bax, and Bcl2 expression increased, and caspase3 activity increased. Furthermore, we found that combined manganese-iron cytotoxicity was lower than that induced by manganese exposure alone. Manganese, iron alone, or their combination exposure can induce apoptosis in glial cells. Iron can reduce the toxicity of manganese, and there is an antagonistic effect between manganese and iron.


Asunto(s)
Hierro , Manganeso , Ratones , Animales , Manganeso/toxicidad , Manganeso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hierro/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo
5.
Neurosci Lett ; 820: 137612, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38142924

RESUMEN

In Alzheimer's disease (AD), microglia are involved in synaptic pruning and mediate synapse loss. LINGO-1 is a negative regulator of nerve growth, and whether antagonizing LINGO-1 can attenuate synaptic pruning by microglia and rescue dendritic spines in the hippocampus in AD is still unclear. On this basis, the anti-LINGO-1 antibody, which binds to LINGO-1 protein and antagonizes the effects of LINGO-1, was administered to 10-month-old APP/PS1 transgenic mice for 2 months. The Morris water maze test, immunohistochemical and stereological methods, immunofluorescence and 3D reconstruction were used. Compared to wild-type mice, APP/PS1 transgenic mice had worse performance on behavioral tests, fewer dendritic spines but more microglia in the hippocampus. Meanwhile, the microglia in APP/PS1 transgenic mice had more branches of medium length (4-6 µm) and a cell body area with greater variability. Moreover, APP/PS1 transgenic mice had more postsynaptic termini colocalized with microglia in the hippocampus than wild-type mice. The anti-LINGO-1 antibody significantly reversed these changes in AD, indicating that the anti-LINGO-1 antibody can improve hippocampus-dependent learning and memory abilities and effectively rescue dendritic spines in the hippocampus of AD mice and that microglia might participate in this progression in AD. These results provide a scientific basis for further studying the mechanism of the anti-LINGO-1 antibody in AD and help to elucidate the role of LINGO-1 in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Aprendizaje por Laberinto , Ratones Transgénicos , Microglía/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
6.
Exp Neurol ; 363: 114371, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871860

RESUMEN

Alzheimer's disease (AD) is closely related to hippocampal synapse loss, which can be alleviated by running exercise. However, further studies are needed to determine whether running exercise reduces synapse loss in the hippocampus in an AD model by regulating microglia. Ten-month-old male wild-type mice and APP/PS1 mice were randomly divided into control and running groups. All mice in the running groups were subjected to voluntary running exercise for four months. After the behavioral tests, immunohistochemistry, stereological methods, immunofluorescence staining, 3D reconstruction, western blotting and RNA-Seq were performed. Running exercise improved the spatial learning and memory abilities of APP/PS1 mice and increased the total number of dendritic spines, the levels of the PSD-95 and Synapsin Ia/b proteins, the colocalization of PSD-95 and neuronal dendrites (MAP-2) and the number of PSD-95-contacting astrocytes (GFAP) in the hippocampi of APP/PS1 mice. Moreover, running exercise reduced the relative expression of CD68 and Iba-1, the number of Iba-1+ microglia and the colocalization of PSD-95 and Iba-1+ microglia in the hippocampi of APP/PS1 mice. The RNA-Seq results showed that some differentially expressed genes (DEGs) related to the complement system (Cd59b, Serping1, Cfh, A2m, and Trem2) were upregulated in the hippocampi of APP/PS1 mice, while running exercise downregulated the C3 gene. At the protein level, running exercise also reduced the expression of advanced glycation end products (AGEs), receptor for advanced glycation end products (RAGE), C1q and C3 in the hippocampus and AGEs and RAGE in hippocampal microglia in APP/PS1 mice. Furthermore, the Col6a3, Scn5a, Cxcl5, Tdg and Clec4n genes were upregulated in the hippocampi of APP/PS1 mice but downregulated after running, and these genes were associated with the C3 and RAGE genes according to protein-protein interaction (PPI) analysis. These findings indicate that long-term voluntary exercise might protect hippocampal synapses and affect the function and activation of microglia, the AGE/RAGE signaling pathway in microglia and the C1q/C3 complement system in the hippocampus in APP/PS1 mice, and these effects may be related to the Col6a3, Scn5a, Cxcl5, Tdg and Clec4n genes. The current results provide an important basis for identifying targets for the prevention and treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Actividad Motora , Animales , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Complemento C1q/genética , Complemento C1q/metabolismo , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/farmacología , Hipocampo/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones Transgénicos , Microglía/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptores Inmunológicos/metabolismo
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(6): 1757-1765, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36476900

RESUMEN

OBJECTIVE: To explore the correlation between different body mass index (BMI) and prognosis of mantle cell lymphoma (MCL). METHODS: The clinical characteristics and biological indices of 108 patients with MCL treated in Fujian Medical University Union Hospital were retrospectively analyzed, and the effects of different BMI on overall survival (OS) and progression-free survival (PFS) were analyzed. The correlation between BMI and B symptoms, LDH and Ki-67 was further observed. Furthermore,the differences of BMI between Autologous peripheral blood stem cell transplantation(Auto-PBSCT) and conventional chemotherapy groups were explored. RESULTS: Among 108 patients, the median age at diagnosis was 59(25-79) years old, and the male to female ratio was 4.4∶1. 88.89% of patients with Ann Arbor staging III-IV, 63.89% with bone marrow involvement, and 49.07% with splenic infiltration. Patients with BMI ≥ 24 kg/m2 were divided into two groups: the high BMI group and the low BMI group. The 5-year PFS and OS of patients in the low BMI group were 31.9% and 47.0%, respectively, while those in the high BMI group were 64.6% and 68.7%, respectively. The incidence of death in the high BMI group was lower than that of the low BMI group (P<0.01). In multivariate analysis, BMI was an independent predictor of PFS (HR=0.282; 95% CI: 0.122-0.651; P=0.003) and an independent predictor of OS (HR=0.299; 95% CI: 0.129-0.693; P=0.005). Also, patients with B symptoms had a lower BMI than those without B symptoms (P=0.01), but BMI had no effect on patients' LDH and Ki-67. The prognosis of 16 patients treated with Auto-PBSCT was significantly better than that of the conventional chemotherapy group. There was no significant difference in BMI between Auto-PBSCT group and conventional chemotherapy group. CONCLUSION: BMI is an independent prognostic factor for PFS and OS in MCL, and may be influenced by the effect of B symptoms on BMI.


Asunto(s)
Linfoma de Células del Manto , Adulto , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Linfoma de Células del Manto/terapia , Índice de Masa Corporal , Antígeno Ki-67 , Estudios Retrospectivos , Pronóstico
9.
Front Neurosci ; 16: 854219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35527818

RESUMEN

Background: Rehabilitation of post-stroke dysphagia is an urgent clinical problem, and repetitive transcranial magnetic stimulation (rTMS) has been widely used in the study of post-stroke function. However, there is no reliable evidence-based medicine to support the effect of rTMS on post-stroke dysphagia. This review aims to evaluate the effectiveness and safety of rTMS on post-stroke dysphagia. Methods: English-language literature published before December 20, 2021, were searched in six electronic databases. Identified articles were screened, data were extracted, and the methodological quality of included trials was assessed. Meta-analysis was performed using RevMan 5.3 software. The GRADE method was used to assess the quality of the evidence. Results: A total of 10 studies with 246 patients were included. Meta-analysis showed that rTMS significantly improved overall swallowing function (standardized mean difference [SMD]-0.76, 95% confidence interval (CI)-1.07 to-0.46, p < 0.0001, n = 206; moderate-quality evidence), Penetration Aspiration Scale (PAS) (mean difference [MD]-1.03, 95% CI-1.51 to-0.55, p < 0.0001, n = 161; low-quality evidence) and Barthel index scale (BI) (MD 23.86, 95% CI 12.73 to 34.99, p < 0.0001, n = 136; moderate-quality evidence). Subgroup analyses revealed that (1) rTMS targeting the affected hemisphere and targeting both hemispheres significantly enhanced overall swallowing function and reduced aspiration. (2) Low-frequency rTMS significantly enhanced overall swallowing function and reduced aspiration, and there was no significant difference between high-frequency rTMS and control group in reducing aspiration (p = 0.09). (3) There was no statistical difference in the dropout rate (low-quality evidence) and adverse effects (moderate-quality evidence) between the rTMS group and the control group. Conclusion: rTMS improved overall swallowing function and activity of daily living ability and reduced aspiration in post-stroke patients with good acceptability and mild adverse effects.

10.
Brain Behav ; 12(6): e2569, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35484991

RESUMEN

BACKGROUND: Intermittent theta burst stimulation (iTBS) is known to improve cognitive impairment caused by Alzheimer's disease and Parkinson's disease, but studies are lacking with respect to the efficacy of iTBS on poststroke cognitive impairment (PSCI). OBJECTIVE: This study was conducted to investigate the effect of left dorsolateral prefrontal cortex (DLPFC) iTBS on improving cognitive function in stroke patients. METHODS: Fifty-eight patients with PSCI are randomly divided into iTBS (n = 28) and sham stimulation groups (n = 30). Both groups receive routine cognitive-related rehabilitation. The iTBS group is treated with iTBS intervention of the left DLPFC, and the sham stimulation group is treated with the same parameters at the same site for 2 weeks. Outcome measures are assessed at baseline (T0) and immediately after the last intervention (T1) by mini-mental state examination (MMSE), Oxford cognitive screen, and event-related potential P300. RESULTS: There are no differences in baseline clinical characteristics between the two groups. After intervention, the MMSE scores and P300 amplitude increase significantly for both groups, and the P300 incubation period reduces significantly. The change value of the iTBS group is significantly higher than that of sham stimulation group (p < .05). Compared with the sham stimulation group, the iTBS group has more significant changes in semantic comprehension and executive function (p < .05). CONCLUSION: iTBS can effectively and safely improve overall cognitive impairment in stroke patients, including semantic understanding and executive function, and it also has a positive impact on memory function. Future randomized controlled studies with large samples and long-term follow-up should be conducted to further validate the results of the present study.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Accidente Cerebrovascular , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Método Doble Ciego , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Estimulación Magnética Transcraneal/métodos
11.
Neurobiol Dis ; 156: 105406, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34044148

RESUMEN

In view of the negative regulatory effect of leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 1 (LINGO-1) on neurons, an antibody against LINGO-1 (anti-LINGO-1 antibody) was herein administered to 10-month-old APP/PS1 transgenic Alzheimer's disease (AD) mice for 2 months as an experimental intervention. Behavioral, stereology, immunohistochemistry and immunofluorescence analyses revealed that the anti-LINGO-1 antibody significantly improved the cognitive abilities, promoted adult hippocampal neurogenesis (AHN), decreased the amyloid beta (Aß) deposition, enlarged the hippocampal volume, and increased the numbers of total neurons and GABAergic interneurons, including GABAergic and CCK-GABAergic interneurons rich in cannabinoid type 1 receptor (CB1R), in the hippocampus of AD mice. In contrast, this intervention significantly reduced the number of GABAergic interneurons expressing LINGO-1 and CB1R in the hippocampus of AD mice. More importantly, we also found a negative correlation between LINGO-1 and CB1R on GABAergic interneurons in the hippocampus of AD mice, while the anti-LINGO-1 antibody reversed this relationship. These results indicated that LINGO-1 plays an important role in the process of hippocampal neuron loss in AD mice and that antagonizing LINGO-1 can effectively prevent hippocampal neuron loss and promote AHN. The improvement in cognitive abilities may be attributed to the improvement in AHN, and in the numbers of GABAergic interneurons and CCK-GABAergic interneurons rich in CB1Rs in the hippocampus of AD mice induced by the anti-LINGO-1 antibody. Collectively, the double target effect (LINGO-1 and CB1R) initiated by the anti-LINGO-1 antibody may provide an important basis for the study of drugs for the prevention and treatment of AD in the future.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Disfunción Cognitiva/metabolismo , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptor Cannabinoide CB1/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Anticuerpos Monoclonales/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Neuronas GABAérgicas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Receptor Cannabinoide CB1/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo
12.
J Comp Neurol ; 529(7): 1571-1583, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32965038

RESUMEN

Chronic stress can induce cognitive impairment, and synapse number was significantly decreased in the hippocampus of rats suffering from chronic stress. Lingo-1 is a potent negative regulator of axonal outgrowth and synaptic plasticity. In the current study, the effects of anti-Lingo-1 antibody on the spatial learning and memory abilities and hippocampal synapses of stressed rats were investigated. After 4 weeks of stress exposure, the model group was randomly divided into a chronic stress group and an anti-Lingo-1 group. Then, the anti-Lingo-1 group rats were treated with anti-Lingo-1 antibody (8 mg/kg) for 3 weeks. The effects of anti-Lingo-1 antibody on the spatial learning and memory abilities were investigated with the Morris water maze test. Immunohistological staining and an unbiased stereological method were used to estimate the total number of dendritic spine synapses in the hippocampus. At the behavioral level, after 3 weeks of treatment, the anti-Lingo-1 group rats displayed significantly more platform location crossings in the Morris water maze test than the chronic stress group rats. Anti-Lingo-1 significantly prevented the declines in dendritic spine synapses and postsynaptic density protein-95 (PSD-95) expression in the dentate gyrus and the CA1 and CA3 regions of the hippocampus. The present results indicated that anti-Lingo-1 antibody may be a safe and effective drug for alleviating memory impairment in rats after chronic stress and protecting synapses in the hippocampus of stressed rats.


Asunto(s)
Proteínas de la Membrana/antagonistas & inhibidores , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Memoria Espacial/fisiología , Estrés Psicológico/complicaciones , Sinapsis/patología , Animales , Anticuerpos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Ratas , Ratas Sprague-Dawley , Memoria Espacial/efectos de los fármacos , Sinapsis/efectos de los fármacos
13.
J Deaf Stud Deaf Educ ; 19(4): 423-37, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25052819

RESUMEN

This review is conducted to describe how children who are deaf or hard of hearing (D/HH) interact with hearing peers in inclusive settings, illustrate the difficulties and challenges faced by them in interacting with peers, and identify effective interventions that promote their social interaction in inclusive education. A systematic search of databases and journals identified 21 papers that met the inclusion criteria. Two broad themes emerged from an analysis of the literatures, which included processes and outcomes of interactions with peers and intervention programs. The research indicates that children who are D/HH face great difficulties in communicating, initiating/entering, and maintaining interactions with hearing peers in inclusive settings. The co-enrollment and social skills training programs are considered to be effective interventions for their social interaction. Communication abilities and social skills of children who are D/HH, responses of children with normal hearing, and the effect of environment are highlighted as crucial aspects of social interactions. In addition, future research is needed to study the interaction between children who are D/HH and hearing peers in natural settings, at different stages of school life, as well as improving social interaction and establishing an inclusive classroom climate for children who are D/HH.


Asunto(s)
Educación , Pérdida Auditiva , Relaciones Interpersonales , Niño , Sordera , Humanos , Grupo Paritario , Instituciones Académicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...