Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 189: 137-147, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39190953

RESUMEN

The accumulation of microplastics (MPs) has been a major threat to the natural environment and human health. However, incineration and landfilling may not be appropriate for the management of MPs. This paper evaluated the feasibility of incorporating MPs with diverse dimensions (50 to 500 µm) and contents (2.5 % to 10 %) into geopolymer cured under different temperatures (40 and 80 °C). The compressive (fc) and flexural strength (ff) after curing and thermal exposure (200 to 600 °C) were determined. When cured at 40 °C, fc and ff decreased with percentages of MPs incorporated. By contrast, when cured at 80 °C, the addition of 2.5 % MPs increased fc and ff by up to 33 % (from 52.2 to 69.4 MPa) and 18 % (from 8.2 to 9.7 MPa), depending on MPs' sizes. The XRD and TGA results suggested that the observed increases in mechanical properties can be attributed to the formation of more calcium alumino (silicate) hydrates (C-(A)-S-H gels) induced by the incorporation of a small quantity of MPs (2.5 %). The SEM images also showed better adhesion between MPs and geopolymeric products when cured under 80 °C, potentially inhibiting crack development. After being exposed to evaluated temperatures (200 and 400 °C), fc of the specimens with 2.5 % MPs and cured at 80 °C was higher than that without MPs. The fc dropped dramatically due to the degradation of MPs between 400 and 600 °C. The increase in strength and heat resistance (up to 400 °C) of MPs-incorporated geopolymer cured under 80 °C indicated the potential recycling and reuse of MPs for geopolymer materials.


Asunto(s)
Microplásticos , Reciclaje , Reciclaje/métodos , Temperatura , Polímeros/química
2.
Waste Manag ; 183: 101-111, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38735093

RESUMEN

The permeability of municipal solid wastes (MSWs) is important for the design and operation of landfills. This study presented the experimental investigation of the permeability of low food content- (LF-) and high food content- (HF-) MSWs prepared in laboratory-scale bioreactors for up to 5 years. The permeability of MSWs with diverse degrees of decomposition (DOBs), void ratios, and permeation liquids was measured (288 tests). The measured permeability was compared to that predicted from the (modified) Kozeny-Carman (K-C) equations in four different forms. The results indicated that the permeability of both LF- and HF-MSWs decreased significantly (p < 0.05) with decomposition under a given void ratio. The predicted permeability using the original K-C equation fitted well with that of fresh MSWs. The permeability of decomposed MSWs was closer to the predicted results using the modified K-C equation with the effective void ratio. This can be attributed to the increase in the fine fractions due to degradation. The reduction in the effective voids was more significant with HF-MSWs. The parameters required in the (modified) K-C equations showed a good correlation with DOB and effective particle size (d10). The predicted permeability based on the relationship between DOB (or d10) and equation parameters was within 3 times the difference compared to the measured values. The above results indicated that the modified K-C equation can be adopted to predict the permeability of fresh and degraded MSWs while more field-scale experiments should be conducted to further evaluate its feasibility.


Asunto(s)
Permeabilidad , Eliminación de Residuos , Residuos Sólidos , Residuos Sólidos/análisis , Eliminación de Residuos/métodos , Alimentos , Reactores Biológicos , Instalaciones de Eliminación de Residuos
3.
Sci Total Environ ; 912: 168773, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38008331

RESUMEN

The applications of magnesium oxychloride cement (MOC) have been extensively studied recently due to its eco-friendly and high-strength nature. However, one of the significant limitations of MOC is its poor water resistance. To address this limitation, this study explored the prospect of incorporating biochar particles (up to 25 % of the dry mass of MgO) to form lightweight MOC with improved water resistance. The compressive (fc) and flexural (ff) strengths were investigated after 28-day curing and under 56-day water attack. The fc of MOC after immersion was determined under both wet (directly after immersion) and dry (air-dried to constant weights) conditions. The results indicated that the inclusion of 5 % and 10 % biochar increased the 28-day fc, while the addition of biochar decreased ff regardless of its dosage. Microscopic examination uncovered that the increase in strength resulted from the promoted production of phase 5 (5 Mg(OH)2·MgCl2·8H2O) and the reduction in unreacted MgO. The inclusion of 5 % and 10 % biochar increased the compressive and flexural strength retention ratios after 56-day immersion. The ff with 5 % biochar inclusion after immersion was higher compared to that of pure MOC. Moreover, the inclusion of biochar had minimal effects on the thermal degradation of MOC. The above results suggest that biochar can be a potential additive to enhance the mechanical behaviour and water resistance of MOC. As fc of immersed MOC increased during air-drying, a new equation was developed to describe variations in fc of MOC subject to different degrees of saturation during drying.

4.
J Environ Manage ; 351: 119858, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38118346

RESUMEN

Microplastic (MP) can significantly affect soil behaviour and the ecosystem. This paper presents an experimental study to investigate the effects of MP contamination and leachate exposure on the desiccation cracks, hydraulic conductivity, and water retention properties of the natural black clay. The leachate was from a landfill in Australia. The black clay was incorporated with up to 2.0% MPs by weight (w/w) with diverse dimensions and mixed with water/leachate. The measured properties include saturated hydraulic conductivity (ksat), soil-water characteristic curves, moisture evaporation rates, and crack intensity factors. The results suggest that the inclusion of MPs significantly increases ksat, and this increase is more obvious for soils with larger dimensions and contents of MPs, e.g., ksat of the black clay with 2.0% of 500 µm MP increases significantly by 206% (p < 0.05). The black clay exposed to leachate exhibits a slight increase in ksat due to the low viscosity of leachate. The existence of MPs decreases the residual moisture contents and air-entry pressures, and so does the water retention capacity (v/v %) of the black clay. The exposure to leachate increases the air-entry pressures by 6.0%-15.8% of the clay. The evaporation rates increase with the dimensions and concentrations of MPs. The highest evaporation rate (0.96 g/h) can be observed in samples exposed to 2.0% 500 µm MP with water addition. For all samples, the crack intensity factors increase when MP content is between 0.2% and 1.0% and decreases slightly after that. After being exposed to leachate, the evaporation rates and crack intensity factors of the black clay are decreased by 2.4%-12.6% and 3.6%-13.7%, respectively.


Asunto(s)
Microplásticos , Plásticos , Arcilla , Ecosistema , Desecación , Silicatos de Aluminio , Suelo , Agua
5.
Waste Manag ; 171: 512-521, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37806159

RESUMEN

The effects of biochar-amended soils as landfill covers have been extensively studied in terms of liquid and gas permeability. However, the influences of biochar-amended soils on the performance of municipal solid wastes (MSWs) in bioreactor landfills have not been well understood. This paper investigates the potential application of biochar-amended soils as final and intermediate covers in landfills. The MSWs with biochar-amended soils as final and intermediate covers were recirculated with mature leachate in laboratory-scale bioreactors. The pH, chemical oxygen demand, ammonia and volatile fatty acids (VFAs) concentrations of leachates, mass reduction rates, settlement, methane, and total gas generations of MSWs were investigated. The results indicate that biochar-amended soils as intermediate landfill covers can provide pH-buffer capacity, increase the pH of leachate and decrease the accumulation of VFAs in the early stage of decomposition. The concentration of ammonia in the leachate with biochar-amended soils as intermediate cover is lower than that with natural soils. The application of biochar-amended soils as intermediate and/or final covers increases the biocompression ratios and settlement of MSWs. The application of biochar-amended soils as final cover slightly decreases the methane generation potential (L0). Biochar-amended soils as intermediate covers increase L0 by 10%, and biochar-amended soils as both intermediate and final covers enhance L0 by 25%. The increase in the ammonia removal, settlement, and methane yield indicates the viability of biochar-amended soils as intermediate landfill covers. Further studies can focus on the long-term behaviour of MSWs with soil covers with different biochar amendment rates and particle sizes.

6.
Sci Total Environ ; 901: 166502, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37619730

RESUMEN

The influences of microplastics (MPs) contamination on soils have been extensively studied recently. Most of previous studies focus on saturated hydraulic conductivities and water retention of loose soils under laboratory conditions. The effects of MPs on the hydraulic properties of compacted soils for engineering purposes have not been well understood. This paper presents the laboratory investigation of water retention capacity, saturated (ksat) and unsaturated (kθ) hydraulic conductivities of a compacted natural soil contaminated by MPs and exposed to fresh, medium-aged, and stabilized leachates. The saturated (kg) and unsaturated air conductivities (kgθ) are calculated. The MPs with maximum particle sizes of 500, 150 and 50 µm were added to soils to obtain samples with mass ratios of 0.5, 1.0, 2.0, and 5.0 %, respectively. Under similar ranges of dry densities, permeation of fresh leachates decreases ksat of the compacted soils by 30 % while exposure to stabilized leachates increases ksat by 10 %, due to the viscosities of liquids. The flow channel properties of the compacted soils contaminated with different sizes and concentrations of MPs vary. The most complex flow channel can be found in samples with 5 % 50 µm MPs. The inclusions of MPs decrease residual moisture contents of the compacted soils regardless of MP sizes and percentages. The effects of MPs on air-entry pressures and parameter n depend on the sizes of MPs. The kθ (kgθ) of compacted soils with MPs depend on the combined effects of ksat (kg) and tortuosity parameter (l). Though l ranges from -0.85 to 2.12 with different levels of MP exposures, it does not have a significant influence on the relative hydraulic (kθ/ksat) and air conductivities (kgθ/kg) of the compacted soils. Future studies can focus on the long-term hydraulic properties of soils under MP contamination.

7.
Waste Manag ; 163: 108-121, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37004460

RESUMEN

This paper presents the development of a new settlement model to predict the long-term settlement of municipal solid wastes (MSWs). The total settlement of the MSWs results from the direct loss of solids due to decomposition and compression due to stress variation induced by loss of solids, flow of gas and liquid and mechanical creep. The geotechnical properties of MSWs are considered as functions of degrees of biodegradation (DOB). To validate the model, two settlement profilers (2.5 years) and three geodetic monitoring networks (2 years) were installed at Mugga Lane Landfill, ACT, Australia to monitor the settlement of an MSW lift and three closed landfill cells, respectively. The settlement rates of the landfill cells with the ages of 7, 8, 14, and 8, 9 and 15 years are 0.53, 0.35, 0.06 and 0.46, 0.36, 0.05 mm/day, respectively. In addition, 5 large scale and 3 small scale bioreactors were set up in the field and laboratory to address the long-term physical, mechanical and biochemical behaviours of the MSWs under different stress levels. The predicted settlement is compared to the test results from the bioreactors, in-situ monitoring data and the settlement predicted using an existing model, which has been improved by coupling the geotechnical properties of MSWs with DOBs. The predicted settlement using the proposed model well fits the test results and monitoring data. The settlement strain is predicted to be 28.2 % during the filling stage of the landfill and 5.9 % in 5 years after the closure.


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Residuos Sólidos/análisis , Eliminación de Residuos/métodos , Modelos Teóricos , Instalaciones de Eliminación de Residuos , Presión , Biodegradación Ambiental
8.
Waste Manag ; 163: 73-84, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001314

RESUMEN

This paper investigates the drying and wetting water retention curves (WRCs) of municipal solid wastes (MSWs) with different paper contents, dry unit weights and degrees of biodegradation (DOBs). Fresh synthetic samples were prepared based on the field composition of the MSWs at Mugga Lane Landfill, the Australian Capital Territory (ACT), Australia. The degraded samples were prepared in simulators with MSWs of different initial dry unit weights and decomposition periods with leachate recirculation. The water retention curves (WRCs) of the MSWs were determined using pressure plate tests, in both drying and wetting phases. The outflow from MSWs was analysed using Gardner's method to obtain the unsaturated hydraulic conductivity. The results indicate that the WRCs of the MSWs are greatly affected by the DOB, paper content and dry unit weight. When DOB < 30 %, as DOB increases, the air-entry pressure of MSWs with paper increases, and the residual moisture content decreases regardless of paper content. With DOB > 30 %, the air entry pressure and residual water content depend on the balance between organic matter and highly decomposed organic constituents. The paper content affects the WRCs of MSWs due to its water retention capacity and change in the particle size distribution with decomposition. The increase in the dry unit weight of MSWs significantly increases the air entry pressure and residual moisture content, similar to the borehole samples with combined effects of biodegradation and increase in stress level from literature. Hysteresis effects have been observed during the drying and wetting of MSWs. The hysteresis of WRCs increases with the paper content and DOB.


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Residuos Sólidos/análisis , Australia , Instalaciones de Eliminación de Residuos , Reactores Biológicos , Agua , Eliminación de Residuos/métodos
9.
Waste Manag ; 159: 39-51, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36736036

RESUMEN

This paper investigates the effects of degrees of compaction (initial dry unit weights), recirculation liquid and rate, and environmental temperature on the long-term physical, geotechnical, and biochemical properties of municipal solid wastes (MSWs) biodegraded for approximately 800 days. Four field bioreactors were filled with fresh MSWs collected from a landfill site. Three laboratory bioreactors were filled with synthetic MSWs with the composition same as that used in the field bioreactors. The bioreactors were recirculated with water or leachate at different rates. Compared to water recirculation, leachate recirculation further promotes the settlement of the MSWs and methane generation. Increasing the recirculation rate does not significantly increase the settlement of the MSWs. The biocompression ratio increases with the environmental temperature. The MSWs with lower dry unit weights are more sensitive to the change in temperature, especially with leachate recirculation. However, opposite to common sense, the decomposition of MSWs may not significantly contribute to the settlement after analysing the relationship between the degrees of biodegradation and settlement of the MSWs. Over 90 % of the settlement during the test period was completed within 25 % degrees of biodegradation. The major change in the physical, geotechnical, and biochemical properties occurs at low (less than20 %) degrees of biodegradation. A new equation is proposed to describe the nonlinear variation in the methane generation rate. The modelled methane generation rate and accumulated volume of methane well match the test results from the laboratory scale bioreactors and other studies.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Residuos Sólidos/análisis , Eliminación de Residuos/métodos , Contaminantes Químicos del Agua/análisis , Reactores Biológicos , Biodegradación Ambiental , Metano/análisis , Agua , Instalaciones de Eliminación de Residuos
10.
Waste Manag ; 149: 207-217, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35752108

RESUMEN

This paper investigates the geotechnical properties of a type of synthetic municipal solid waste (MSW). The tests were conducted on five groups of synthetic MSW compositions, based on the field characterization of fresh MSW samples collected from Mugga Lane landfill site, ACT, Australia. Compaction, hydraulic conductivity, compression, drained and undrained shear properties of the MSWs with water and leachate addition to the field moisture content were studied. The study shows that adding leachate could increase the maximum dry density of the MSWs under given moisture contents and compaction energies. The hydraulic conductivity of the MSWs could decrease by 100-fold when the confining pressure increases from 15 kPa to 240 kPa. The shear behaviours of the MSW samples follow the strain hardening behaviours of loose sand. The cohesion of the MSWs decreases but the friction angle of the MSWs increases with leachate addition due to the change in the surface tension and viscosity of the pore liquids and the loss of cementitious components. The addition of leachate increases the compression ratios of the MSWs by around 10% to 30% due to the change in the pH of the pore liquids. The most significant components affecting the shear and compression behaviours of the MSW were paper and wood. The effects of leachate exposure on the geotechnical properties of the MSWs is not very significant. It is important to consider the variation of MSW properties to the leachate properties (viscosity, pH and surface tension) in the large body of MSWs in the landfills.


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Fenómenos Físicos , Resistencia al Corte , Residuos Sólidos/análisis , Instalaciones de Eliminación de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA