Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Small ; : e2403835, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984921

RESUMEN

Bone regeneration is a well-orchestrated process synergistically involving inflammation, angiogenesis, and osteogenesis. Therefore, an effective bone graft should be designed to target multiple molecular events and biological demands during the bone healing process. In this study, a biodegradable gelatin methacryloyl (GelMA)-based Janus microsphere delivery system containing calcium phosphate oligomer (CPO) and bone morphogenetic protein-2 (BMP-2) is developed based on natural biological events. The exceptional adjustability of GelMA facilitates the controlled release and on-demand application of biomolecules, and optimized delivery profiles of CPO and BMP-2 are explored. The sustained release of CPO during the initial healing stages contributes to early immunomodulation and promotes mineralization in the late stage. Meanwhile, the administration of BMP-2 at a relatively high concentration within the therapeutic range enhances the osteoinductive property. This delivery system, with fine-tuned release patterns, induces M2 macrophage polarization and creates a conducive immuno-microenvironment, which in turn facilitates effective bone regeneration in vivo. Collectively, this study proposes a bottom-up concept, aiming to develop a user-friendly and easily controlled delivery system targeting individual biological events, which may offer a new perspective on developing function-optimized biomaterials for clinical use.

2.
Life Sci ; 346: 122591, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548013

RESUMEN

As a family of cationic host defense peptides, human ß-defensins (HBDs) are ubiquitous in the oral cavity and are mainly synthesized primarily by epithelial cells, serving as the primary barrier and aiming to prevent microbial invasion, inflammation, and disease while maintaining physiological homeostasis. In recent decades, there has been great interest in their biological functions, structure-activity relationships, mechanisms of action, and therapeutic potential in oral diseases. Meanwhile, researchers are dedicated to improving the properties of HBDs for clinical application. In this review, we first describe the classification, structural characteristics, functions, and mechanisms of HBDs. Next, we cover the role of HBDs and their synthetic analogs in oral diseases, including dental caries and pulp infections, periodontitis, peri-implantitis, fungal/viral infections and oral mucosal diseases, and oral squamous cell carcinoma. Finally, we discuss the limitations and challenges of clinical translation of HBDs and their synthetic analogs, including, but not limited to, stability, bioavailability, antimicrobial activity, resistance, and toxicity. Above all, this review summarizes the biological functions, mechanisms of action, and therapeutic potential of both natural HBDs and their synthetic analogs in oral diseases, as well as the challenges associated with clinical translation, thus providing substantial insights into the laboratory development and clinical application of HBDs in oral diseases.


Asunto(s)
Salud Bucal , beta-Defensinas , Humanos , beta-Defensinas/farmacología , beta-Defensinas/química , Enfermedades de la Boca/tratamiento farmacológico , Animales , Relación Estructura-Actividad
3.
Bone ; 183: 117076, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521235

RESUMEN

The skeleton serves as a supportive and protective organ for the body. As individuals age, their bone tissue undergoes structural, cellular, and molecular changes, including the accumulation of senescent cells. Extracellular vesicles (EVs) play a crucial role in aging through the cellular secretome and have been found to induce or accelerate age-related dysfunction in bones and to contribute further via the circulatory system to the aging of phenotypes of other bodily systems. However, the extent of these effects and their underlying mechanisms remain unclear. Therefore, this paper attempts to give an overview of the current understanding of age-related alteration in EVs derived from bones. The role of EVs in mediating communications among bone-related cells and other body parts is discussed, and the significance of bones in the whole-body aging process is highlighted. Ultimately, it is hoped that gaining a clearer understanding of the relationship between EVs and aging mechanisms may serve as a basis for new treatment strategies for age-related degenerative diseases in the skeleton and other systems.


Asunto(s)
Senescencia Celular , Vesículas Extracelulares , Humanos , Cuerpo Humano , Envejecimiento , Huesos
4.
Mol Ther ; 32(4): 1158-1177, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38332583

RESUMEN

Osteoclast precursors (OCPs) are thought to commit to osteoclast differentiation, which is accelerated by aging-related chronic inflammation, thereby leading to osteoporosis. However, whether the fate of OCPs can be reshaped to transition into other cell lineages is unknown. Here, we showed that M2 macrophage-derived extracellular vesicles (M2-EVs) could reprogram OCPs to downregulate osteoclast-specific gene expression and convert OCPs to M2 macrophage-like lineage cells, which reshaped the fate of OCPs by delivering the molecular metabolite glutamate. Upon delivery of glutamate, glutamine metabolism in OCPs was markedly enhanced, resulting in the increased production of α-ketoglutarate (αKG), which participates in Jmjd3-dependent epigenetic reprogramming, causing M2-like macrophage differentiation. Thus, we revealed a novel transformation of OCPs into M2-like macrophages via M2-EVs-initiated metabolic reprogramming and epigenetic modification. Our findings suggest that M2-EVs can reestablish the balance between osteoclasts and M2 macrophages, alleviate the symptoms of bone loss, and constitute a new approach for bone-targeted therapy to treat osteoporosis.


Asunto(s)
Vesículas Extracelulares , Osteoporosis , Humanos , Osteoclastos/metabolismo , Ácido Glutámico/metabolismo , Macrófagos/metabolismo , Osteoporosis/genética , Osteoporosis/terapia , Osteoporosis/metabolismo
5.
Small ; 20(23): e2310556, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38386291

RESUMEN

Skin injury repair is a dynamic process involving a series of interactions over time and space. Linking human physiological processes with materials' changes poses a significant challenge. To match the wound healing process, a spatiotemporal controllable biomimetic skin is developed, which comprises a three-dimensional (3D) printed membrane as the epidermis, a cell-containing hydrogel as the dermis, and a cytokine-laden hydrogel as the hypodermis. In the initial stage of the biomimetic skin repair wound, the membrane frame aids wound closure through pre-tension, while cells proliferate within the hydrogel. Next, as the frame disintegrates over time, cells released from the hydrogel migrate along the residual membrane. Throughout the process, continuous cytokines release from the hypodermis hydrogel ensures comprehensive nourishment. The findings reveal that in the rat full-thickness skin defect model, the biomimetic skin demonstrated a wound closure rate eight times higher than the blank group, and double the collagen content, particularly in the early repair process. Consequently, it is reasonable to infer that this biomimetic skin holds promising potential to accelerate wound closure and repair. This biomimetic skin with mechanobiological effects and spatiotemporal regulation emerges as a promising option for tissue regeneration engineering.


Asunto(s)
Piel , Cicatrización de Heridas , Animales , Ratas , Hidrogeles/química , Biomimética/métodos , Materiales Biomiméticos/química , Ingeniería de Tejidos/métodos , Humanos , Piel Artificial , Ratas Sprague-Dawley , Impresión Tridimensional
6.
BMC Oral Health ; 24(1): 150, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297251

RESUMEN

BACKGROUND: High technical thresholds, long operative times, and the need for expensive and specialized equipment impede the widespread adoption of endodontic microsurgery in many developing countries. This study aimed to compare the effects of a simplified, cost-effective, and time-efficient surgical approach involving orthograde obturation using biological ceramic material greater than 6 mm combined with apicoectomy for single-rooted teeth with short lengths with those of the conventional and current standard methods. MATERIALS AND METHODS: Forty-five premolars equally categorized into three groups: conventional surgery group, standard surgery group, and modified surgery group. A µCT scan was used to calculate the volume of voids. A micro-leakage test and scanning electron microscope (SEM) were performed to assess the sealing effect. Additionally, four cases of chronic periapical periodontitis in the anterior region were selected, and the patients received either the modified approach or the standard surgery for endodontic microsurgery. RESULTS: The volumes of voids in the apical 0-3 mm of the modified group and the standard group were comparable. The micro-leakage test and SEM examination demonstrated closely bonded fillings in the dentinal walls in both the modified surgery group and standard surgery group. The outcomes of the preliminary application of this modified procedure on patients were successful at the time of the follow-up cutoff. CONCLUSIONS: The modified surgery group exhibited similar root canal filling and apical sealing abilities with the standard procedure for single-rooted teeth with short lengths (< 20 mm). The preliminary application of this modified surgical procedure achieved favorable results.


Asunto(s)
Periodontitis Periapical , Materiales de Obturación del Conducto Radicular , Humanos , Obturación del Conducto Radicular/métodos , Raíz del Diente , Apicectomía/métodos , Diente Premolar , Periodontitis Periapical/diagnóstico por imagen , Periodontitis Periapical/cirugía
7.
Adv Healthc Mater ; 13(2): e2302418, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37742096

RESUMEN

Despite significant efforts utilizing advanced technologies, the contentious debate surrounding the intricate mechanism underlying collagen fibril mineralization, particularly with regard to amorphous precursor infiltration and phase transformation, persists. This work proposes an amorphous calcium phosphate (ACP)-mediated pathway for collagen fibril mineralization and utilizing stochastic optical reconstruction microscopy technology, and has experimentally confirmed for the first time that the ACP nanoparticles can infiltrate inside collagen fibrils. Subsequently, the ACP-mediated phase transformation occurs within collagen fibrils to form HAP crystallites, and significantly enhances the mechanical properties of the mineralized collagen fibrils compared to those achieved by the calcium phosphate ion (CPI)-mediated mineralization and resembles the natural counterpart. Furthermore, demineralized dentin can be effectively remineralized through ACP-mediated mineralization, leading to complete restoration of its mechanical properties. This work provides a new paradigm of collagen mineralization via particle-mediated phase transformation, deepens the understanding of the mechanism behind the mineralization of collagen fibrils, and offers a new strategy for hard tissue repair.


Asunto(s)
Colágeno , Matriz Extracelular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fosfatos de Calcio
8.
Nanomicro Lett ; 16(1): 34, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019305

RESUMEN

Implantable hydrogel-based bioelectronics (IHB) can precisely monitor human health and diagnose diseases. However, achieving biodegradability, biocompatibility, and high conformality with soft tissues poses significant challenges for IHB. Gelatin is the most suitable candidate for IHB since it is a collagen hydrolysate and a substantial part of the extracellular matrix found naturally in most tissues. This study used 3D printing ultrafine fiber networks with metamaterial design to embed into ultra-low elastic modulus hydrogel to create a novel gelatin-based conductive film (GCF) with mechanical programmability. The regulation of GCF nearly covers soft tissue mechanics, an elastic modulus from 20 to 420 kPa, and a Poisson's ratio from - 0.25 to 0.52. The negative Poisson's ratio promotes conformality with soft tissues to improve the efficiency of biological interfaces. The GCF can monitor heartbeat signals and respiratory rate by determining cardiac deformation due to its high conformability. Notably, the gelatin characteristics of the biodegradable GCF enable the sensor to monitor and support tissue restoration. The GCF metamaterial design offers a unique idea for bioelectronics to develop implantable sensors that integrate monitoring and tissue repair and a customized method for endowing implanted sensors to be highly conformal with soft tissues.

9.
Int J Biol Macromol ; 253(Pt 5): 127190, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37802452

RESUMEN

Bacterial biofilm formation and drug resistance are common issues associated with wound healing. Antimicrobial peptides (AMPs) are a new class of antimicrobial agents with the potential to solve these global health issues. New injectable adhesive antibacterial hydrogels have excellent prospects of becoming the next innovative wound-healing dressings. In this study, the hyaluronic acid was connected to the antibacterial peptide Plantaricin 149 (Pln149), obtaining HAD@AMP. HAD@AMP performed well in efficient antimicrobial activity, good histocompatibility, low drug resistance, low bacterial biofilm formation, and fast wound healing process which are essential for rapid healing of infected wound. During the hydrogel degradation process, Pln149 was released to inhibit bacterial communication and reduce bacterial biofilm formation. Meanwhile, HAD@AMP could up-regulate anti-inflammatory and pro-angiogenic factors, and down-regulate inflammatory factors to promote the healing of infected wounds, which provide a new idea for skin healing strategies.


Asunto(s)
Ácido Hialurónico , Infección de Heridas , Humanos , Ácido Hialurónico/farmacología , Antibacterianos , Antiinflamatorios/farmacología , Biopelículas , Hidrogeles/farmacología , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológico
11.
Int J Oral Sci ; 15(1): 34, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580325

RESUMEN

The crosstalk between the nerve and stomatognathic systems plays a more important role in organismal health than previously appreciated with the presence of emerging concept of the "brain-oral axis". A deeper understanding of the intricate interaction between the nervous system and the stomatognathic system is warranted, considering their significant developmental homology and anatomical proximity, and the more complex innervation of the jawbone compared to other skeletons. In this review, we provide an in-depth look at studies concerning neurodevelopment, craniofacial development, and congenital anomalies that occur when the two systems develop abnormally. It summarizes the cross-regulation between nerves and jawbones and the effects of various states of the jawbone on intrabony nerve distribution. Diseases closely related to both the nervous system and the stomatognathic system are divided into craniofacial diseases caused by neurological illnesses, and neurological diseases caused by an aberrant stomatognathic system. The two-way relationships between common diseases, such as periodontitis and neurodegenerative disorders, and depression and oral diseases were also discussed. This review provides valuable insights into novel strategies for neuro-skeletal tissue engineering and early prevention and treatment of orofacial and neurological diseases.


Asunto(s)
Sistema Nervioso , Sistema Estomatognático , Huesos , Humanos
12.
Carbohydr Polym ; 319: 121174, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567692

RESUMEN

Non-collagenous proteins (NCPs) in the extracellular matrix (ECM) of bone and dentin are known to play a critical regulatory role in the induction of collagen fibril mineralization and are embedded in hyaluronic acid (HA), which acts as a water-retaining glycosaminoglycan and provides necessary biochemical and biomechanical cues. Our previous study demonstrated that HA could regulate the mineralization degree and mechanical properties of collagen fibrils, yet its kinetics dynamic mechanism on mineralization is under debate. Here, we further investigated the role of HA on collagen fibril mineralization and the possible mechanism. The HA modification can significantly promote intrafibrillar collagen mineralization by reducing the electronegativity of the collagen surface to enhance calcium ions (Ca2+) binding capacity to create a local higher supersaturation. In addition, the HA also provides additional nucleation sites and shortens the induction time of amorphous calcium phosphate (ACP)-mediated hydroxyapatite (HAP) crystallization, which benefits mineralization. The acceleration effect of HA on intrafibrillar collagen mineralization is also confirmed in collagen hydrogel and in vitro dentin remineralization. These findings offer a physicochemical view of the regulation effect of carbohydrate polymers in the body on biomineralization, the fine prospect for an ideal biomaterial to repair collagen-mineralized tissues.

13.
Int J Biol Macromol ; 252: 126060, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37524282

RESUMEN

Periodontitis is a common chronic inflammatory disease caused by plaque that leads to alveolar bone resorption and tooth loss. Inflammation control and achieving better tissue repair are the key to periodontitis treatment. In this study, human ß-Defensin 1 short motif Pep-B with inflammation inhibition and differentiation regulation properties, is firstly used in the treatment of periodontitis, and an injectable photopolymerizable Pep-B/chitosan methacryloyl composite hydrogel (CMSA/Pep-B) is constructed. We confirm that Pep-B improves inflammation, and restores osteogenic behavior and function of injured stem cells. CMSA/Pep-B has good injectability, fluidity and photopolymerizability, and can sustainably release Pep-B to maintain drug concentration in periodontal pockets. Furthermore, animal experiments showed that CMSA/Pep-B significantly ameliorated the inflammation of the periodontium and reduced the alveolar bone loss by decreasing inflammatory infiltration, osteoclast formation and collagen destruction. In conclusion, CMSA/Pep-B is envisaged to be a novel bioactive material or therapeutic drug for treating periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Quitosano , Periodontitis , Animales , Humanos , Quitosano/uso terapéutico , Hidrogeles/uso terapéutico , Bolsa Periodontal/complicaciones , Bolsa Periodontal/tratamiento farmacológico , Periodontitis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Pérdida de Hueso Alveolar/tratamiento farmacológico
15.
Adv Healthc Mater ; 12(12): e2201548, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36867636

RESUMEN

Inspired by the bionic mineralization theory, organic-inorganic composites with hydroxyapatite nanorods orderly arranged along collagen fibrils have attracted extensive attention. Planted with an ideal bone scaffold will contribute greatly to the osteogenic microenvironment; however, it remains challenging to develop a biomimetic scaffold with the ability to promote intrafibrillar mineralization and simultaneous regulation of immune microenvironment in situ. To overcome these challenges, a scaffold containing ultra-small particle size calcium phosphate nanocluster (UsCCP) is prepared, which can enhance bone regeneration through the synergetic effect of intrafibrillar mineralization and immunomodulatory. By efficient infiltration into collagen fibrils, the UsCCP released from the scaffold achieves intrafibrillar mineralization. It also promotes the M2-type polarization of macrophages, leading to an immune microenvironment with both osteogenic and angiogenic potential. The results confirm that the UsCCP scaffold has both intrafibrillar mineralization and immunomodulatory effects, making it a promising candidate for bone regeneration.


Asunto(s)
Fosfatos de Calcio , Colágeno , Fosfatos de Calcio/farmacología , Matriz Extracelular , Regeneración Ósea
16.
BMC Oral Health ; 23(1): 76, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747164

RESUMEN

BACKGROUND: To explore the influence of cross-sectional type and morphological parameters at the mandibular molar sites on lingual plate perforation (LPP) during the immediate implant placement (IIP). METHODS: 181 implants were virtually placed in the mandibular molar sites on the cone beam computed tomography (CBCT). Each cross-section of the implantation site was divided into the Undercut (U)/Parallel (P)/Convex (C) types. Morphologically relevant parameters were measured on the cross-sections, including width of the upper end (Wb), width of the lower end (Wc), vertical height (V), angle between the natural crown axis and the alveolar bone axis (∠ß), LC depth (LCD), LC height, and angle between the horizontal line and the line connecting the most prominent point and the most concave point of lingual plate (∠α). Besides, the distance from the end of the virtual implant and the lingual bone plate of the cross-section (DIL) was calculated. Relationships between all the morphologically relevant parameters and the DIL were further analyzed. RESULTS: A total of 77 (42.5%) cross-sections were classified as U-type, which was the most common one, accounting for 63% of the second molar regions. All LPP cases and most of the nearly LPP (87.9%) cases occurred at the U-type cross-sections, and the relationship between the DIL and the morphological parameters can be expressed by a multivariate linear equation. CONCLUSIONS: The occurrence rate of U-type cross-sections in the second molar region was very high, and the risk of LPP should be considered during IIP. Except for the U-type, significant large LCD, small Wc, and large âˆ ß were the important relevant factors. CBCT and multivariate linear equations could help to assess the LPP risk and provide a reference for implant placement design pre-surgery.


Asunto(s)
Implantes Dentales , Tomografía Computarizada de Haz Cónico Espiral , Humanos , Implantes Dentales/efectos adversos , Estudios Transversales , Mandíbula/diagnóstico por imagen , Mandíbula/cirugía , Mandíbula/anatomía & histología , Implantación Dental Endoósea/efectos adversos , Implantación Dental Endoósea/métodos , Tomografía Computarizada de Haz Cónico/métodos
17.
Nat Commun ; 14(1): 364, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690617

RESUMEN

Nonlinear Hall effect (NLHE) is a new type of Hall effect with wide application prospects. Practical device applications require strong NLHE at room temperature (RT). However, previously reported NLHEs are all low-temperature phenomena except for the surface NLHE of TaIrTe4. Bulk RT NLHE is highly desired due to its ability to generate large photocurrent. Here, we show the spin-valley locked Dirac state in BaMnSb2 can generate a strong bulk NLHE at RT. In the microscale devices, we observe the typical signature of an intrinsic NLHE, i.e. the transverse Hall voltage quadratically scales with the longitudinal current as the current is applied to the Berry curvature dipole direction. Furthermore, we also demonstrate our nonlinear Hall device's functionality in wireless microwave detection and frequency doubling. These findings broaden the coupled spin and valley physics from 2D systems into a 3D system and lay a foundation for exploring bulk NLHE's applications.


Asunto(s)
Frío , Frutas , Temperatura , Microondas , Física
18.
Aust Endod J ; 49 Suppl 1: 46-57, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36127810

RESUMEN

This study aimed to evaluate and compare the remineralisation, mechanical, anti-aging, acid resistance and antibacterial properties of calcium phosphate ion clusters (CPICs) materials with those of Duraphat and Icon. The remineralisation and mechanical properties were investigated using scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy and nanoindentation. CPICs induced epitaxial crystal growth on the enamel surface, where the regrown enamel-like apatite layers had a similar hardness and elastic modulus to natural enamel (p > 0.05). Acid resistance and anti-aging properties were tested based on ion dissolution and surface roughness. CPICs exhibited similar calcium and phosphate ion dissolution to the control (p > 0.05), and its roughness decreased after thermocycling (p < 0.05), thereby decreasing the risk of enamel surface demineralisation. The minimum inhibitory concentration was 0.1 mg/ml, and the minimum bactericidal concentration ranged from 0.05 to 0.1 mg/ml. Overall, this biomimetic CPICs is a promising alternative to dental demineralisation.


Asunto(s)
Fluoruros , Desmineralización Dental , Humanos , Fluoruros/análisis , Fluoruros/farmacología , Desmineralización Dental/prevención & control , Esmalte Dental/química , Fosfatos de Calcio/farmacología , Fosfatos de Calcio/análisis , Fosfatos/análisis , Fosfatos/farmacología , Dureza
20.
Adv Healthc Mater ; 11(23): e2201161, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36103604

RESUMEN

The organic-inorganic structure in biological hard tissues ensures their marvelous characteristics but these hybrids are easily destroyed by the demineralization of inorganic components, e.g., the damage of dentin. Current clinical materials for hard tissue regeneration commonly act as "fillers" and their therapeutic effect is limited by the failures of biological-linked organic-inorganic interface reconstruction. Herein, a fast in situ crosslinking of calcium phosphate oligomers (CPOs) on collagen matrixes for efficient organic-inorganic interface re-construction, which can result in a biomimetic hybrid, is demonstrated. By using damaged dentin as an example, the inorganic ionic crosslinking can instantly infiltrate into the dentin matrix to rebuild a dense and continuous calcium phosphate-collagen hybrid within only 5 min, where the structurally integrated organic-inorganic interface is identical to natural dentin. As a result, the damaged dentin can be fully recovered to a healthy one, which is superior to any current dentin treatments. The fast construction of biomimetic hybrid by inorganic ionic crosslinking provides a promising strategy for hard tissue repair and follows great potentials of CPOs as advanced biomedical materials in future.


Asunto(s)
Biomimética , Fosfatos de Calcio , Fosfatos de Calcio/farmacología , Colágeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA