Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 795
Filtrar
1.
Int J Biol Macromol ; 279(Pt 2): 135237, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218190

RESUMEN

Kuey teow is one of the delicacies of Guangdong, China and is a gluten-free noodle dish made from rice. It has a short storage period and extending the shelf life by quick freezing induces quality deterioration due to temperature fluctuations. To improve its freeze-thaw frozen storage quality, this paper examined the effects of hydroxypropyl corn starch (HCS), guar gum (GG), and compound phosphates (CP) on the quality of quick-frozen kuey teow during freeze-thaw cycles. The mechanism was investigated by identifying changes in the moisture status, aging degree of the starch, and textural and cooking characteristics. The results showed that all three additions improved the toughness, chewiness and steaming characteristics of the kuey teow, with CP significantly enhancing chewiness. XRD and FTIR results revealed that GG more significantly inhibited the decrease of starch crystallinity, while HCS inhibited starch aging. GG, HCS and CP all improved the hydration characteristics and water holding capacity of rice starch. GG enhances the ability of starch to bind more tightly with water, resulting in a more uniform water distribution and a more continuous and tight structure of the kuey teow. This study will provide a theoretical basis for compounding and optimizing the quick-freezing of kuey teow.

2.
Food Chem Toxicol ; 192: 114949, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182635

RESUMEN

Acute kidney injury (AKI) is a worldwide public health problem with high morbidity and mortality. Cisplatin is a widely used chemotherapeutic agent for treating solid tumors, but the induction of AKI restricts its clinical application. In this study, the effect of cisplatin on the expression of organic ion transporters was investigated through in vivo and in vitro experiments. Targeted metabolomics techniques were used to measure the levels of selected endogenous substances in serum. Transmission electron microscopy was used to observe the microstructure of renal tubular epithelial cells. Our results show that the toxicity of cisplatin on HK-2 cells or HEK-293 cells was time- and dose-dependent. Administration of cisplatin decreased the expression of OAT1/3 and OCT2 and increased the expression of MRP2/4. Mitochondrial damage induced by cisplatin lead to renal tubular epithelial cell injury. In addition, administration of cisplatin resulted in significant changes in endogenous substance levels in serum, including amino acids, carnitine, and fatty acids. These serum amino acids and metabolites (α-aminobutyric acid, proline, and alanine), carnitines (tradecanoylcarnitine, hexanylcarnitine, octanoylcarnitine, 2-methylbutyroylcarnitine, palmitoylcarnitine, and linoleylcarnitine) and fatty acids (9E-tetradecenoic acid) represent endogenous substances with diagnostic potential for cisplatin-induced AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Cisplatino/toxicidad , Humanos , Animales , Células HEK293 , Masculino , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Antineoplásicos/toxicidad , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Transportador 2 de Cátion Orgánico/metabolismo , Transportador 2 de Cátion Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Carnitina/análogos & derivados , Carnitina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
3.
Int J Biol Macromol ; 278(Pt 1): 134469, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102911

RESUMEN

In this study, pectin extracted from pomelo peel was investigated using three different combination methods of pulsed electric field (PEF) and cellulase. Three action sequences were performed, including PEF treatment followed by enzymatic hydrolysis, enzymatic hydrolysis followed by PEF treatment, and enzymatic hydrolysis simultaneously treated by PEF. The three corresponding pectins were namely PEP, EPP and SP. The physiochemical, molecular structural and functional properties of the three pectins were determined. The results showed that PEP had excellent physiochemical properties, with the highest yield (12.08 %), total sugar (80.17 %) and total phenol content (38.20 %). The monosaccharide composition and FT-IR analysis indicated that the three pectins were similar. The molecular weights of PEP, EPP and SP were 51.13, 88.51 and 40.00 kDa, respectively. PEP showed the best gel properties, emulsification stability and antioxidant capacity among the three products, due to its high galacturonic acid and total phenol content, appropriate protein and low molecular weight. The mechanism of PEF-assisted cellulase hydrolysis of pomelo peel was also revealed by SEM analysis. These results suggested that PEF pretreatment was the best method, which not only improved the efficiency of enzymatic extraction, but also reduced resource waste and increased financial benefits.


Asunto(s)
Celulasa , Citrus , Peso Molecular , Pectinas , Hidrólisis , Celulasa/metabolismo , Celulasa/química , Pectinas/química , Citrus/química , Antioxidantes/química , Antioxidantes/farmacología , Electricidad , Fenómenos Químicos , Fenoles/química , Frutas/química , Espectroscopía Infrarroja por Transformada de Fourier , Monosacáridos/análisis
4.
Int J Biol Macromol ; 279(Pt 3): 135186, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39216569

RESUMEN

The chelation reaction of soluble soybean polysaccharide (SSPS) with zinc was investigated. Using response surface methodology, the optimum parameters for SSPS-Zn synthesis were obtained: pH 5.3, SSPS-ZnCl2 mass ratio of 9.44:1, reaction temperature 50.44 °C, and reaction time 1.5 h, with the highest zinc content of 24.73 %. Compared with SSPS, SSPS-Zn increased in rhamnogalacturonan content and decreased in that of neutral monosaccharides (Fuc, Ara, Gal, Glu and Xyl). UV-vis spectra indicated that SSPS-Zn was lower than SSPS in protein content. FTIR spectra indicated that CO group of SSPS was bonded to Zn2+. X-ray diffraction spectra demonstrated that SSPS-Zn had higher crystallinity. Congo red reactions showed that SSPS possessed a triple-helix conformation while SSPS-Zn formed an irregular free-coiled conformation. EDX confirmed SSPS-Zn synthesis successfully. TGA curves exhibited that SSPS-Zn required higher temperature to undergo degradation. AFM revealed that SSPS-Zn was clustered while SSPS was filamentous. SEM micrographs showed the cracked fragments on the surface of SSPS-Zn. By in vitro simulation of gastrointestinal digestion, Zn2+ release reached 68.87 % after 2 h digestion. Consequently, the chelation of SSPS with zinc could change structure and provide a basis for research and application of novel zinc supplements.

5.
Neurobiol Dis ; 200: 106636, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142612

RESUMEN

INTRODUCTION: The bidirectional relationship between the brain cortex and cardiovascular diseases (CVDs) remains inadequately explored. METHODS: This study used bidirectional Mendelian randomization (MR) analysis to explore the interactions between nine phenotypes associated with hypertension, heart failure, atrial fibrillation (AF), and coronary heart disease (CHD), and brain cortex measurements. These measurements included total surface area (SA), average thickness (TH), and the SA and TH of 34 regions defined by the Desikan-Killiany atlas. The nine traits were obtained from sources such as the UK Biobank and FinnGen, etc., while MRI-derived traits of cortical structure were sourced from the ENIGMA Consortium. The primary estimate was obtained using the inverse-variance weighted approach. A false discovery rate adjustment was applied to the p-values (resulting in q-values) in the analyses of regional cortical structures. RESULTS: A total of 1,260 two-sample MR analyses were conducted. Existing CHD demonstrated an influence on the SA of the banks of the superior temporal sulcus (bankssts) (q=0.018) and the superior frontal lobe (q=0.018), while hypertension was associated with changes in the TH of the lateral occipital region (q=0.02). Regarding the effects of the brain cortex on CVD incidence, total SA was significantly associated with the risk of CHD. Additionally, 16 and 3 regions exhibited significant effects on blood pressure and AF risk, respectively (q<0.05). These regions were primarily located in the frontal, temporal, and cingulate areas, which are associated with cognitive function and mood regulation. CONCLUSION: The detection of cortical changes through MRI could aid in screening for potential neuropsychiatric disorders in individuals with established CVD. Moreover, abnormalities in cortical structure may predict future CVD risk, offering new insights for prevention and treatment strategies.


Asunto(s)
Enfermedades Cardiovasculares , Corteza Cerebral , Imagen por Resonancia Magnética , Análisis de la Aleatorización Mendeliana , Humanos , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/epidemiología , Masculino , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Femenino , Persona de Mediana Edad , Corazón/diagnóstico por imagen
6.
Int J Food Microbiol ; 425: 110868, 2024 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-39154568

RESUMEN

The Hazard Analysis and Critical Control Point (HACCP) system plays a crucial role in ensuring food safety within food service establishments, effectively reducing the risk of foodborne diseases. This study focused on assessing the risk of microbe contamination in poultry-based cook-served food during meal preparation in four restaurants and five selected HACCP-certified hotels in eastern China. We examined samples collected from 26 poultry-based cooked dishes, 248 food contact surfaces, 252 non-food contact surfaces, and 121 hand swabs. Our findings indicated a favorable trend of compliance with Chinese national standards, as Escherichia coli and Campylobacter were not detected in any cooked food samples. However, the microbiological assessments revealed non-compliance with total plate count standards in 7 % of the cooked samples from restaurants. In contrast, both dine-in hotels and restaurants exhibited significant non-compliance with guidance concerning food and non-food contact surfaces. Furthermore, our study found that chefs' hand hygiene did not meet microbiological reference standards, even after washing. Notably, Campylobacter persisted at 27 % and 30 % on chefs' hands, posing a significant risk of cross-contamination and foodborne diseases. These findings emphasize the urgent necessity for enhanced supervision of hygiene procedures and process monitoring in the HACCP-certified establishments engaged in the preparation and serving of food. Targeted interventions and food safety education for different chef subgroups can enhance food handling practices and reduce the risk of foodborne diseases in independent food establishments.


Asunto(s)
Contaminación de Alimentos , Microbiología de Alimentos , Restaurantes , Restaurantes/normas , China , Humanos , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Análisis de Peligros y Puntos de Control Críticos/métodos , Inocuidad de los Alimentos , Manipulación de Alimentos/normas , Culinaria/normas , Campylobacter/aislamiento & purificación , Animales , Recuento de Colonia Microbiana , Higiene de las Manos/normas
7.
Curr Drug Metab ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39161138

RESUMEN

Precision dosing is essential in improving drug efficacy and minimizing adverse reactions, especially in liver impaired patients. However, there is no objective index to directly evaluate the body's ability to metabolize specific drugs. Many factors affect the activity of enzymes, and alter the systemic exposure of substrate drugs, like genetic polymorphism, drug-drug interactions and physiological/pathological state. So, quantifying the activities of enzymes dynamically would be helpful to make precision dosing. Recently, some endogenous substrates of enzymes, such as 6ß-hydroxycortisol (6ß-OH-cortisol)/cortisol and 6ß-hydroxycortisone, have been identified to investigate variations in drug enzymes in humans. Clinical data obtained support their performance as surrogate probes in terms of reflecting the activities of corresponding enzyme. Therefore, a group of Monitored endogenous biomarkers in multiple points can address the uncertainty in drug metabolization in the preclinical phase and have the potential to fulfill precision dosing. This review focuses on recent progress in the contribution of endogenous substances to drug precision dosing, factors that influence enzyme activities, and drug exposure in vivo.

8.
Toxicol Sci ; 201(2): 190-205, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39041788

RESUMEN

Early identification of drug-induced acute kidney injury (AKI) is essential to prevent renal damage. The renal tubules are typically the first to exhibit damage, frequently accompanied by changes in renal tubular transporters. With this in mind, we have identified an endogenous substrate of the renal tubular transporters that may serve as a biomarker for early detection of drug-induced AKI. Using gentamicin- and vancomycin-induced AKI models, we found that traumatic acid (TA), an end metabolite, was rapidly increased in both AKI models. TA, a highly albumin-bound compound (96% to 100%), could not be filtered by the glomerulus and was predominantly eliminated by renal tubules via the OAT1, OAT3, OATP4C1, and P-gp transporters. Importantly, there is a correlation between elevated serum TA levels and reduced OAT1 and OAT3 levels. A clinical study showed that serum TA levels rose before an increase in serum creatinine in 13 out of 20 AKI patients in an intensive care unit setting. In addition, there was a notable rise in TA levels in the serum of individuals suffering from nephrotic syndrome, chronic renal failure, and acute renal failure. These results indicate that the decrease in renal tubular transporter expression during drug-induced AKI leads to an increase in the serum TA level, and the change in TA may serve as a monitor for renal tubular injury. Acute kidney injury (AKI) has a high clinical incidence, and if patients do not receive timely treatment and intervention, it can lead to severe consequences. During AKI, tubular damage is often the primary issue. Endogenous biomarkers of tubular damage are critical for the early diagnosis and treatment of AKI. However, there is currently a lack of reliable endogenous biomarkers for diagnosing tubular damage in clinical practice. Tubular secretion is primarily mediated by renal tubular transporters (channels), which are also impaired during tubular damage. Therefore, we aim to identify endogenous biomarkers of tubular damage from the perspective of renal tubular transporters, providing support for the early detection and intervention of AKI. TA is a substrate of multiple channels, including OAT1, OAT3, OATP4C1, and P-gp, and is primarily secreted by the renal tubules. In the early stages of rat AKI induced by GEN and VCA, serum TA levels are significantly elevated, occurring earlier than the rise in serum creatinine (SCr). Thus, TA is expected to become a potential endogenous biomarker for the early diagnosis of tubular damage.


Asunto(s)
Lesión Renal Aguda , Biomarcadores , Gentamicinas , Túbulos Renales , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Animales , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Túbulos Renales/patología , Masculino , Gentamicinas/toxicidad , Humanos , Biomarcadores/sangre , Vancomicina/toxicidad , Vancomicina/sangre , Ratas , Ratas Sprague-Dawley , Femenino , Maleatos
9.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39001155

RESUMEN

Electrocardiography (ECG) has emerged as a ubiquitous diagnostic tool for the identification and characterization of diverse cardiovascular pathologies. Wearable health monitoring devices, equipped with on-device biomedical artificial intelligence (AI) processors, have revolutionized the acquisition, analysis, and interpretation of ECG data. However, these systems necessitate AI processors that exhibit flexible configuration, facilitate portability, and demonstrate optimal performance in terms of power consumption and latency for the realization of various functionalities. To address these challenges, this study proposes an instruction-driven convolutional neural network (CNN) processor. This processor incorporates three key features: (1) An instruction-driven CNN processor to support versatile ECG-based application. (2) A Processing element (PE) array design that simultaneously considers parallelism and data reuse. (3) An activation unit based on the CORDIC algorithm, supporting both Tanh and Sigmoid computations. The design has been implemented using 110 nm CMOS process technology, occupying a die area of 1.35 mm2 with 12.94 µW power consumption. It has been demonstrated with two typical ECG AI applications, including two-class (i.e., normal/abnormal) classification and five-class classification. The proposed 1-D CNN algorithm performs with a 97.95% accuracy for the two-class classification and 97.9% for the five-class classification, respectively.


Asunto(s)
Algoritmos , Electrocardiografía , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Electrocardiografía/métodos , Humanos , Inteligencia Artificial , Dispositivos Electrónicos Vestibles
10.
Food Chem ; 459: 140208, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39053112

RESUMEN

Inspired by the structure characteristics of natural products, the size and morphology of particles are carefully controlled using a bottom-up approach to construct nanomaterials with specific spatial unit distribution. Animal polysaccharide nanomaterials, such as chitosan and chondroitin sulfate nanomaterials, exhibit excellent biocompatibility, degradability, customizable surface properties, and novel physical and chemical properties. These nanomaterials hold great potential for development in achieving a sustainable bio-economy. This paper provides a summary of the latest research results on the preparation of nanomaterials from animal polysaccharides. The mechanism for preparing nanomaterials through the bottom-up method from different sources of animal polysaccharides is introduced. Furthermore, this paper discusses the potential hazards posed by industrial applications to the environment and human health, as well as the challenges and future prospects associated with using animal polysaccharides in nanomaterials.


Asunto(s)
Nanoestructuras , Polisacáridos , Nanoestructuras/química , Animales , Polisacáridos/química , Humanos , Quitosano/química , Sulfatos de Condroitina/química
11.
J Agric Food Chem ; 72(29): 16519-16529, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39011869

RESUMEN

Light-flavor Baijiu (LFB) is widely cherished for its flavor. This study identified the thresholds of 14 aroma compounds in a 52% ethanol-water matrix and conducted a comprehensive analysis of the interactions among key aroma compounds in LFB using the Feller additive model and odor activity values approach. Among them, the interactions of ß-damascenone with ester and alcohol compounds were primarily promotive, while the interaction with acid compounds was predominantly masking. Furthermore, for the first time, the electroencephalogram (EEG) technology was used to characterize the interactions between aroma compounds. The results showed that the brain activity in the alpha frequency band demonstrated heightened olfactory sensitivity. The EEG could not only display the additive effect of odor intensity but also reflect the differences in aroma similarity between different odors. This study demonstrated that the EEG can serve as an effective tool for olfactory assessment.


Asunto(s)
Electroencefalografía , Aromatizantes , Odorantes , Olfato , Odorantes/análisis , Humanos , Masculino , Adulto , Aromatizantes/química , Femenino , Compuestos Orgánicos Volátiles/química , Adulto Joven , Gusto , Percepción Olfatoria , Encéfalo/fisiología
12.
Food Chem ; 460(Pt 2): 140571, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39079358

RESUMEN

Soy protein is a promising nutritional source with improved functionality and bioactivities due to conjugation with polyphenols (PP)-the conjugates between soy protein and PP held by covalent and noncovalent bonds. Different approaches, including thermodynamics, spectroscopy, and molecular docking simulations, can demonstrate the outcomes and mechanism of these conjugates. The soy protein, PP structure, matrix properties (temperature, pH), and interaction mechanism alter the ζ-potential, secondary structure, thermal stability, and surface hydrophobicity of proteins and also improve the techno-functional properties such as gelling ability, solubility, emulsifying, and foaming properties. Soy protein-PP conjugates also reveal enhanced in vitro digestibility, anti-allergic, antioxidant, anticancer, anti-inflammatory, and antimicrobial activities. Thus, these conjugates may be employed as edible film additives, antioxidant emulsifiers, hydrogels, and nanoparticles in the food industry. Future research is needed to specify the structure-function associations of soy protein-PP conjugates that may affect their functionality and application in the food industry.


Asunto(s)
Polifenoles , Proteínas de Soja , Proteínas de Soja/química , Polifenoles/química , Polifenoles/farmacología , Humanos , Antioxidantes/química , Antioxidantes/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Animales , Solubilidad
13.
J Dairy Sci ; 107(10): 7520-7532, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38851582

RESUMEN

Bacillus licheniformis is one of the major spore-forming bacteria with great genotypic diversity in raw milk, dairy ingredients, and final dairy products; it is found throughout the dairy-processing continuum. Although being widely used as a probiotic strain, this species also serves as a potential risk in the dairy industry based on its roles in foodborne illness and dairy spoilage. Biofilm formation of B. licheniformis, combined with the heat resistance of its spores, make it impossible to prevent the presence of B. licheniformis in final dairy products by using traditional cleaning and disinfection procedures. Despite the extensive efforts to identify B. licheniformis in various dairy samples, no reviews have been written on both hazards and benefits of this sporeformer. This review discusses the prevalence of B. licheniformis from raw milk to commercial dairy products, biofilm formation and spoilage potential of B. licheniformis, and possible prevention methods. In addition, the potential benefits of B. licheniformis in the dairy industry are also summarized.


Asunto(s)
Bacillus licheniformis , Productos Lácteos , Leche , Animales , Leche/microbiología , Productos Lácteos/microbiología , Industria Lechera , Biopelículas , Probióticos , Microbiología de Alimentos , Esporas Bacterianas
14.
Ultrason Sonochem ; 107: 106931, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823084

RESUMEN

Thawing is the primary step in handling frozen aquatic products, which directly determines their end-product quality. This study firstly constructed a novel thawing method of ultrasound-assisted slightly basic electrolyzed water (UST), and its influences on the physicochemical and histological properties of shrimp, as well as the structural of myofibrillar proteins (MPs) in shrimp were evaluated. Results indicated that the UST treatment greatly reduced 48.9 % thawing time of frozen shrimp compared to traditional thawing approaches. Meanwhile, the UST effectively decreased the generation of malondialdehyde (MDA), total volatile basic nitrogen (TVB-N), and carbonyl compounds in the thawed shrimps. In addition, it significantly preserved the elasticity and integrity of muscle fiber. Notably, the UST reduced the damage of thawing to the spatial structures of MPs, thereby greatly keeping the stability of protein. All these favorable changes maintained the water holding capacity (WHC) and quality of shrimp. Therefore, the UST is a promising non-thermal thawing technology for aquatic products.


Asunto(s)
Congelación , Penaeidae , Agua , Animales , Agua/química , Penaeidae/química , Ondas Ultrasónicas , Electrólisis/métodos , Malondialdehído , Manipulación de Alimentos/métodos
15.
Front Endocrinol (Lausanne) ; 15: 1360430, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887275

RESUMEN

Prostate cancer (PCa) is commonly occurred with high incidence in men worldwide, and many patients will be eventually suffered from the dilemma of castration-resistance with the time of disease progression. Castration-resistant PCa (CRPC) is an advanced subtype of PCa with heterogeneous carcinogenesis, resulting in poor prognosis and difficulties in therapy. Currently, disorders in androgen receptor (AR)-related signaling are widely acknowledged as the leading cause of CRPC development, and some non-AR-based strategies are also proposed for CRPC clinical analyses. The initiation of CRPC is a consequence of abnormal interaction and regulation among molecules and pathways at multi-biological levels. In this study, CRPC-associated genes, RNAs, proteins, and metabolites were manually collected and integrated by a comprehensive literature review, and they were functionally classified and compared based on the role during CRPC evolution, i.e., drivers, suppressors, and biomarkers, etc. Finally, translational perspectives for data-driven and artificial intelligence-powered CRPC systems biology analysis were discussed to highlight the significance of novel molecule-based approaches for CRPC precision medicine and holistic healthcare.


Asunto(s)
Medicina de Precisión , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/terapia , Neoplasias de la Próstata Resistentes a la Castración/patología , Masculino , Medicina de Precisión/métodos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico
16.
Foods ; 13(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38890838

RESUMEN

Chlorphenamine maleate is a prohibited additive found in herbal teas and health foods. Excessive intake of this substance can result in adverse health effects. In this study, two novel haptens, PEM and bepotastine (PB1), mimicking chlorphenamine maleate structure were designed and synthesized based on molecular simulation for developing two corresponding polyclonal antibodies (PEM-Ab and PB1-Ab), respectively. Afterward, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was developed to quickly and accurately detect chlorphenamine maleate in herbal teas using PB1-Ab, which has a high sensitivity and specificity. For chlorphenamine maleate, the half-maximal inhibitory concentration (IC50) and limit of detection (LOD) of PB1-Ab under ideal circumstances were found to be 1.18 µg/L and 0.07 µg/L, respectively. Besides, an environmentally friendly sample pre-treatment strategy was employed that allowed easy and effective elimination of complex matrices. The ic-ELISA method observed the average recovery rate from 87.7% to 94.0% with the variance coefficient (CV) ranging from 2.2% to 9.4%. Additionally, the identification of 25 commercially available herbal teas using liquid chromatography-tandem mass spectrometry (LC-MS/MS) further confirmed the validity of our detection. The results of the two methods are consistent. Overall, the proposed ic-ELISA could be an ultrasensitive and reliable method for chlorphenamine maleate adulterated in foods or exposure to the environment.

17.
Int J Biol Macromol ; 276(Pt 1): 133272, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38906352

RESUMEN

This study aims to investigate the effect of pulsed electric field (PEF) assisted OSA esterification treatment on the multi-scale structure and digestive properties of cassava starch and structure-digestion relationships. The degree of substitution (DS) of starch dually modified at 1.5-4.5 kV/cm was 37.6-55.3 % higher than that of starch modified by the conventional method. Compared with native starch, the resistant starch (RS) content of esterified starch treated with 3 kV/cm significantly increased by 17.13 %, whereas that of starch produced by the conventional method increased by only 5.91 %. Furthermore, assisted esterification at low electric fields (1.5-3 kV/cm) promotes ester carbonyl grafting on the surface of starch granules, increases steric hindrance and promotes the rearrangement of the amorphous regions of starch, which increases the density of the double-helical structure. These structural changes slow down starch digestion and increase the RS content. Therefore, this study presents a potential method for increasing the RS content of starch products using PEF to achieve the desired digestibility.


Asunto(s)
Electricidad , Manihot , Almidón , Manihot/química , Esterificación , Almidón/química , Almidón Resistente
18.
J Food Sci ; 89(7): 4450-4468, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38822553

RESUMEN

A novel style of flavored wine was developed via infusion of either black tea or green tea into Chardonnay wine. The bioaccessibility and bioavailability of phenolic substances in green/black tea-infused Chardonnay wine were investigated. Catechin, caffeine, and epicatechin gallate, originating from the tea, displayed high absorption rates with apparent permeability coefficient values above 10 × 10-6 cm/s in a human Caco-2 intestinal cell model. A paracellular pathway was proposed to drive the transport of catechin and epicatechin gallate, while the possible transport pathway of caffeine is passive transcellular diffusion route. Co-supplementation of flavonoids of quercetin or naringenin (20 µM) could further enhance the uptake of catechin and epicatechin gallate, but reduce the absorption of caffeine. Great in vitro and cellular antioxidant capacities were witnessed in the tea-macerated wine samples. The wine samples also neutralized the negative impact of tert-butyl hydroperoxide (25 µM) on glutathione S-transferase and glutathione levels, apoptosis induction, and intracellular malondialdehyde levels. RNA sequencing with limma method revealed a total of 1473 and 406 differentially expressed genes in the 21-day-old Caco-2 intestinal cells treated with the green and black tea-macerated wines for 5 h respectively, indicating metabolic changes in the cells from the different wines.


Asunto(s)
Antioxidantes , Cafeína , Catequina , , Vino , Humanos , Células CACO-2 , Vino/análisis , Antioxidantes/farmacología , Catequina/análogos & derivados , Catequina/metabolismo , Catequina/farmacología , Té/química , Camellia sinensis/química , Glutatión/metabolismo
19.
Pestic Biochem Physiol ; 202: 105958, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879340

RESUMEN

The wheat aphid Sitobion miscanthi is a dominant and destructive pest in agricultural production. Insecticides are the main substances used for effective control of wheat aphids. However, their extensive application has caused severe resistance of wheat aphids to some insecticides; therefore, exploring resistance mechanisms is essential for wheat aphid management. In the present study, CYP6CY2, a new P450 gene, was isolated and overexpressed in the imidacloprid-resistant strain (SM-R) compared to the imidacloprid-susceptible strain (SM-S). The increased sensitivity of S. miscanthi to imidacloprid after knockdown of CYP6CY2 indicates that it could be associated with imidacloprid resistance. Subsequently, the posttranscriptional regulation of CYP6CY2 in the 3' UTR by miR-3037 was confirmed, and CYP6CY2 participated in imidacloprid resistance. This finding is critical for determining the role of P450 in relation to the resistance of S. miscanthi to imidacloprid. It is of great significance to understand this regulatory mechanism of P450 expression in the resistance of S. miscanthi to neonicotinoids.


Asunto(s)
Áfidos , Sistema Enzimático del Citocromo P-450 , Resistencia a los Insecticidas , Insecticidas , MicroARNs , Neonicotinoides , Nitrocompuestos , Neonicotinoides/farmacología , Nitrocompuestos/farmacología , Animales , Insecticidas/farmacología , Resistencia a los Insecticidas/genética , Áfidos/genética , Áfidos/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Imidazoles/farmacología
20.
Ultrason Sonochem ; 108: 106962, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38943850

RESUMEN

Meat is highly susceptible to contamination with harmful microorganisms throughout the production, processing, and storage chain, posing a significant public health risk. Traditional decontamination methods like chemical sanitizers and heat treatments often compromise meat quality, generate harmful residues, and require high energy inputs. This necessitates the exploration of alternative non-ionizing technologies for ensuring meat safety and quality. This review provides a comprehensive analysis of the latest advancements, limitations, and future prospects of non-ionizing technologies for meat decontamination, with a specific focus on ultrasonication. It further investigates the comparative advantages and disadvantages of ultrasonication against other prominent non-ionizing technologies such as microwaves, ultraviolet (UV) light, and pulsed light. Additionally, it explores the potential of integrating these technologies within a multi-hurdle strategy to achieve enhanced decontamination across the meat surface and within the matrix. While non-ionizing technologies have demonstrated promising results in reducing microbial populations while preserving meat quality attributes, challenges remain. These include optimizing processing parameters, addressing regulatory considerations, and ensuring cost-effectiveness for large-scale adoption. Combining these technologies with other methods like antimicrobial agents, packaging, and hurdle technology holds promise for further enhancing pathogen elimination while safeguarding meat quality.


Asunto(s)
Descontaminación , Carne , Carne/microbiología , Descontaminación/métodos , Sonicación/métodos , Ondas Ultrasónicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA