Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
1.
Medicine (Baltimore) ; 103(29): e38861, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029026

RESUMEN

Osteoporosis (OP) constitutes a notable public health concern that significantly impacts the skeletal health of the global aging population. Its prevalence is steadily escalating, yet the intricacies of its diagnosis and treatment remain challenging. Recent investigations have illuminated a profound interlink between gut microbiota (GM) and bone metabolism, thereby opening new avenues for probing the causal relationship between GM and OP. Employing Mendelian randomization (MR) as the investigative tool, this study delves into the causal rapport between 211 varieties of GM and OP. The data are culled from genome-wide association studies (GWAS) conducted by the MiBioGen consortium, in tandem with OP genetic data gleaned from the UK Biobank, BioBank Japan Project, and the FinnGen database. A comprehensive repertoire of statistical methodologies, encompassing inverse-variance weighting, weighted median, Simple mode, Weighted mode, and MR-Egger regression techniques, was adroitly harnessed for meticulous analysis. The discernment emerged that the genus Coprococcus3 is inversely associated with OP, potentially serving as a deterrent against its onset. Additionally, 21 other gut microbial species exhibited a positive correlation with OP, potentially accentuating its proclivity and progression. Subsequent to rigorous scrutiny via heterogeneity and sensitivity analyses, these findings corroborate the causal nexus between GM and OP. Facilitated by MR, this study successfully elucidates the causal underpinning binding GM and OP, thereby endowing invaluable insights for deeper exploration into the pivotal role of GM in the pathogenesis of OP.


Asunto(s)
Microbioma Gastrointestinal , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Osteoporosis , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Osteoporosis/prevención & control , Osteoporosis/genética , Huesos/metabolismo
2.
Inorg Chem ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012498

RESUMEN

Polyhedral boranes have potential applications in medicine and material science due to their unique structure and stability. However, tedious and low-yield synthetic methods limited their application. Herein, we have developed a facile large-scale synthetic method for M2[B12H12] (M = Na, K) by the reaction of MBH4 with N,N-dipropylaniline borane in diglyme at 120 or 140 °C in up to 88% yield. The mechanistic studies indicated that intermediates, such as [B3H8]- and [B9H14]-, were formed in the formation process of [B12H12]2- anion, similar to previously reported. The formation of B2H6 from the N,N-dipropylaniline borane adducts is most important. The developed method avoided using toxic materials, with high yield, easily scaled up, raw materials are readily available. Additionally, the starting material, N,N-dipropylaniline, could be repeatedly used at least three times with similar yields, which is an economical way to facilitate industrial synthesis. It is believed that this method will support further application of Na2[B12H12] and K2[B12H12] as solid electrolytes for an all-solid-state batteries.

3.
J Diabetes Res ; 2024: 5661751, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988702

RESUMEN

Purpose: Type 2 diabetes mellitus (T2DM) is associated with multiple neuropsychiatric impairments, including cognitive dysfunction, and melatonin (MLT) plays a crucial role in maintaining normal neuropsychiatric functions. This study is aimed at investigating the change in plasma MLT levels and its association with neuropsychiatric impairments in T2DM patients. Methods: One hundred twenty-six T2DM patients were recruited, and their demographics and clinical data were collected. Apart from the plasma glycated hemoglobin (HbA1c) levels and other routine metabolic indicators, the plasma concentrations of MLT, C-reactive protein (CRP), Interleukin 6 (IL-6), soluble myeloid triggered receptor 1 (sTREM 1), and receptor 2 (sTREM 2) were measured. Moreover, the executive function and depressive tendency were evaluated via the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) and the Epidemiological Research Center Depression Scale (CES-D), respectively. Result: Compared with the low HbA1c group, the T2DM patients in the high HbA1c group presented lower plasma MLT levels but higher plasma concentrations of inflammatory biomarker levels, together with higher scores in the BRIEF-A and CES-D scales. Moreover, results of the Pearson correlation test showed that the plasma MLT levels were negatively correlated with the BRIEF-A and CES-D scores, as well as plasma concentrations of HbA1c and inflammatory indications, indicating that MLT may mediate their neuroinflammation and neuropsychiatric impairments. Furthermore, the ROC curve results indicated that plasma MLT levels have a predictive effect on executive impairment and depressive status in T2DM patients. Conclusion: MLT levels decreased in patients with T2DM and were associated with neuropsychiatric impairments and inflammatory status, and MLT might be developed as a therapeutic agent and predictive indicator for T2DM-associated executive impairment and depression status.


Asunto(s)
Biomarcadores , Disfunción Cognitiva , Depresión , Diabetes Mellitus Tipo 2 , Hemoglobina Glucada , Melatonina , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/psicología , Diabetes Mellitus Tipo 2/complicaciones , Melatonina/sangre , Masculino , Femenino , Persona de Mediana Edad , Hemoglobina Glucada/metabolismo , Hemoglobina Glucada/análisis , Disfunción Cognitiva/sangre , Disfunción Cognitiva/psicología , Depresión/sangre , Biomarcadores/sangre , Anciano , Adulto , Función Ejecutiva , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis
4.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892157

RESUMEN

A dual-emission ratio-fluorescent sensing nanohybrid based on Radix Hedysari green-synthesized carbon quantum dots (CDs) and glutathione-functionalized gold nanoclusters (GSH-AuNCs) had been developed for the determination of cefodizime sodium (CDZM). The designed fluorescence nanohybrid had two significant fluorescence emission peaks at 458 nm and 569 nm when excited at 360 nm, which was attributed to the CDs and GSH-AuNCs. With the addition of CDZM, the fluorescence at 458 nm was slightly weakened while the fluorescence at 569 nm was enhanced obviously. Based on the relationship between the I569/I458 fluorescence intensity ratio and the concentration of CDZM, the designed nanohybrid exhibited a good linearity range of 1.0-1000.0 µM and the limit of detection (LOD) was 0.19 µM. The method was finally applied in the detection of CDZM in urine, showing the potential applications in complicated biological samples.


Asunto(s)
Glutatión , Oro , Nanopartículas del Metal , Puntos Cuánticos , Puntos Cuánticos/química , Humanos , Oro/química , Nanopartículas del Metal/química , Glutatión/orina , Glutatión/química , Límite de Detección , Espectrometría de Fluorescencia/métodos , Carbono/química , Cefalosporinas/orina , Cefalosporinas/química , Fluorescencia
5.
Chem Sci ; 15(24): 9274-9280, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903214

RESUMEN

Broadening carborane applications has consistently been the goal of chemists in this field. Herein, compared to alkyl or aryl groups, a carborane cage demonstrates an advantage in stabilizing a unique bonding interaction: M⋯C-H interaction. Experimental results and theoretical calculations have revealed the characteristic of this two-center, two-electron bonding interaction, in which the carbon atom in the arene ring provides two electrons to the metal center. The reduced aromaticity of the benzene moiety, long distance between the metal and carbon atom in arene, and the upfield shift of the signal of M⋯C-H in the nuclear magnetic resonance spectrum distinguished this interaction from metal⋯C π interaction and metal-C(H) σ bonds. Control experiments demonstrate the unique electronic effects of carborane in stabilizing the M⋯C-H bonding interaction in organometallic chemistry. Furthermore, the M⋯C-H interaction can convert into C-H bond metallization under acidic conditions or via treatment with t-butyl isocyanide. These findings deepen our understanding regarding the interactions between metal centers and carbon atoms and provide new opportunities for the use of carboranes.

6.
Aging Dis ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38916727

RESUMEN

Endogenous retroviruses (ERVs), a subset of genomic transposable elements (TEs) in a broader sense, have remained latent within mammalian genomes for tens of millions of years. These genetic elements are typically in a silenced state due to stringent regulatory mechanisms. However, under specific conditions, they can become activated, triggering inflammatory responses through diverse mechanisms. This activation has been shown to play a potential role in various neurological disorders, tumors, and cellular senescence. Consequently, the regulation of ERV expression through various methods holds promise for clinical applications in disease treatment. ERVs also engage in interactions with a variety of exogenous viruses, thereby influencing the outcomes of viral infectious diseases. This article comprehensively reviews the pathogenic cascade of ERVs, encompassing activation, inflammation, associated diseases, senescence, and interplay with viruses. Additionally, it outlines therapeutic strategies targeting ERVs with the aim of offering novel research directions for understanding the relationship between ERVs and diseases, along with corresponding treatment modalities.

7.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 553-558, 2024 Jun 15.
Artículo en Chino | MEDLINE | ID: mdl-38926370

RESUMEN

The prevalence of short stature among prepubertal children in China is relatively high. Early identification of the cause and timely intervention can bring greater benefits to children with short stature. This paper provides an overview of early diagnosis, intervention measures, and personalized medication dosage for prepubertal short stature children, aiming to provide references for clinical doctors.


Asunto(s)
Estatura , Diagnóstico Precoz , Humanos , Niño , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/etiología
8.
Int J Phytoremediation ; : 1-11, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38932483

RESUMEN

Urease-producing bacteria (UPB) are widely present in soil and play an important role in soil ecosystems. In this study, 65 UPB strains were isolated from cadmium (Cd)-polluted soil around a lead-zinc mine in Yunnan Province, China. The Cd tolerance, removal of Cd from aqueous solution, production of indoleacetic acid (IAA) and plant growth-promoting effects of these materials were investigated. The results indicate that among the 65 UPB strains, four strains with IAA-producing ability were screened and identified as Bacillus thuringiensis W6-11, B. cereus C7-4, Serratia marcescens W11-10, and S. marcescens C5-6. Among the four strains, B. cereus C7-4 had the highest Cd tolerance, median effect concentration (EC50) of 59.94 mg/L. Under Cd 5 mg/L, S. marcescens C5-6 had the highest Cd removal from aqueous solution, up to 69.83%. Under Cd 25 mg/kg, inoculation with B. cereus C7-4 significantly promoted maize growth in a sand pot by increasing the root volume, root surface area, and number of root branches by 22%, 29%, and 20%, respectively, and plant height and biomass by 16% and 36%, respectively, and significantly increasing Cd uptake in the maize roots. Therefore, UPB is a potential resource for enhancing plant adaptability to Cd stress in plants with Cd-polluted habitats.


This study utilized urease-producing bacteria screened from the soil of lead zinc mining areas in Yunnan, China as the research object, enriching the microbial resources in Yunnan. In addition, this article verified the IAA production ability and cadmium removal ability of urease-producing bacteria, and screened out bifunctional urease-producing bacteria that have potential in cadmium pollution control and plant growth promotion.

9.
Int J Ophthalmol ; 17(3): 537-544, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721498

RESUMEN

AIM: To identify the differential methylation sites (DMS) and their according genes associated with diabetic retinopathy (DR) development in type 1 diabetes (T1DM) children. METHODS: This study consists of two surveys. A total of 40 T1DM children was included in the first survey. Because no participant has DR, retina thinning was used as a surrogate indicator for DR. The lowest 25% participants with the thinnest macular retinal thickness were included into the case group, and the others were controls. The DNA methylation status was assessed by the Illumina methylation 850K array BeadChip assay, and compared between the case and control groups. Four DMS with a potential role in diabetes were identified. The second survey included 27 T1DM children, among which four had DR. The methylation patterns of the four DMS identified by 850K were compared between participants with and without DR by pyrosequencing. RESULTS: In the first survey, the 850K array revealed 751 sites significantly and differentially methylated in the case group comparing with the controls (|Δß|>0.1 and Adj.P<0.05), and 328 of these were identified with a significance of Adj.P<0.01. Among these, 319 CpG sites were hypermethylated and 432 were hypomethylated in the case group relative to the controls. Pyrosequencing revealed that the transcription elongation regulator 1 like (TCERG1L, cg07684215) gene was hypermethylated in the four T1DM children with DR (P=0.018), which was consistent with the result from the first survey. The methylation status of the other three DMS (cg26389052, cg25192647, and cg05413694) showed no difference (all P>0.05) between participants with and without DR. CONCLUSION: The hypermethylation of the TCERG1L gene is a risk factor for DR development in Chinese children with T1DM.

10.
Medicine (Baltimore) ; 103(20): e38188, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758859

RESUMEN

BACKGROUND: To assess the predictive capabilities of serum exosomal levels of micro-RNA-520a-5p (miR-520a-5p) concerning the occurrence of severe preeclampsia (sPE) and fetal growth restriction (FGR) during the first trimester of pregnancy. METHODS: During the period spanning from October 2020 to October 2021, serum samples were procured from the first trimester and subsequently preserved by freezing at -80 ℃. These samples were obtained from 105 pregnant women in a nested case-control study. This cohort consisted of individuals who later developed sPE (sPE group, n = 35) and FGR (FGR group, n = 35) during the third trimester. Additionally, 35 women with normal blood pressure were denoted as normal pregnancy group. Serum samples from the first trimester were retrieved from all groups for further analysis after thawing. Exosomes were extracted from the serum samples collected during the first trimester and examined using transmission electron microscopy, western blot, and nanoparticle tracking analysis. Additionally, the determination of their placental origin was also established during the course of the study. Exosome miR-520a-5p levels were measured using real-time quantitative polymerase chain reaction assays, primarily involving quantitative reverse transcription polymerase chain reactions. Fetal placental tissues from the 3 groups were collected shortly after birth, and miR-520a-5p expression was measured using real-time quantitative polymerase chain reaction. Serum placental exosomes and fetal placental tissues were compared for miR-520a-5p levels. Placental trophoblasts were identified as the source of serum exosomes in all 3 groups. RESULTS: It was found that serum placental exosomes exhibited lower levels of miR-520a-5p in both the sPE and FGR groups when compared to the normal pregnancy group. This finding was consistent with observations made in postpartum placental tissues. The predictive accuracy for sPE using miR-520a-5p levels in serum placental exosomes during the first trimester was notably higher (area under the receiver operating characteristic curve = 0.806, P <.05) compared to the prediction of FGR (area under the receiver operating characteristic curve = 0.628, P <.05). CONCLUSION: Placenta-derived exosomes can be extracted from maternal serum during the first trimester of pregnancy and miR-520a-5p detected from the exosomes. The downregulation of miR-520a-5p serves as a more predictive indicator for the subsequent development of sPE compared to predicting FGR.


Asunto(s)
Exosomas , Retardo del Crecimiento Fetal , MicroARNs , Placenta , Preeclampsia , Primer Trimestre del Embarazo , Humanos , Femenino , Embarazo , Preeclampsia/sangre , Preeclampsia/diagnóstico , Retardo del Crecimiento Fetal/sangre , MicroARNs/sangre , Exosomas/metabolismo , Adulto , Estudios de Casos y Controles , Primer Trimestre del Embarazo/sangre , Placenta/metabolismo , Biomarcadores/sangre , Valor Predictivo de las Pruebas
11.
Sci Total Environ ; 933: 173057, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729372

RESUMEN

Dimethylsulfoniopropionate (DMSP), a key organic sulfur compound in marine and subseafloor sediments, is degraded by phytoplankton and bacteria, resulting in the release of the climate-active volatile gas dimethylsulfide (DMS). However, it remains unclear if dominant eukaryotic fungi in subseafloor sediments possess specific abilities and metabolic mechanisms for DMSP degradation and DMS formation. Our study provides the first evidence that fungi from coal-bearing sediments ∼2 km below the seafloor, such as Aspergillus spp., Chaetomium globosum, Cladosporium sphaerospermum, and Penicillium funiculosum, can degrade DMSP and produce DMS. In Aspergillus sydowii 29R-4-F02, which exhibited the highest DMSP-dependent DMS production rate (16.95 pmol/µg protein/min), two DMSP lyase genes, dddP and dddW, were identified. Remarkably, the dddW gene, previously observed only in bacteria, was found to be crucial for fungal DMSP cleavage. These findings not only extend the list of fungi capable of degrading DMSP, but also enhance our understanding of DMSP lyase diversity and the role of fungi in DMSP decomposition in subseafloor sedimentary ecosystems.


Asunto(s)
Hongos , Compuestos de Sulfonio , Compuestos de Sulfonio/metabolismo , Hongos/metabolismo , Sedimentos Geológicos/microbiología , Sulfuros/metabolismo , Biodegradación Ambiental , Liasas de Carbono-Azufre/metabolismo
12.
Environ Pollut ; 351: 124084, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697245

RESUMEN

Due to the potential impacts of microplastics (MPs) and nanoplastics (NPs) on algal growth and thereby affect the climate-relevant substances, dimethylsulfoniopropionate (DMSP) and dimethyl sulfide (DMS), we studied the polystyrene (PS) MPs and NPs of 1 µm and 80 nm impacts on the growth, chlorophyll content, reactive oxygen species (ROS), antioxidant enzyme activity, and DMS/DMSP production in Emiliania huxleyi. E. huxleyi is a prominent oceanic alga that plays a key role in DMS and DMSP production. The results revealed that high concentrations of MPs and NPs inhibited the growth, carotenoid (Car), and Chl a concentrations of E. huxleyi. However, short-time exposure to low concentrations of PS MPs and NPs stimulated the growth of E. huxleyi. Furthermore, high concentrations of MPs and NPs resulted in an increase in the superoxide anion radical (O2.-) production rate and a decrease in the malondialdehyde (MDA) content compared with the low concentrations. Exposure to MPs and NPs at 5 mg L-1 induced superoxide dismutase (SOD) activity as a response to scavenging ROS. High concentrations of MPs and NPs significantly inhibited the production of DMSP and DMS. The findings of this study support the potential ecotoxicological impacts of MPs and NPs on algal growth, antioxidant system, and dimethylated sulfur compounds production, which maybe potentially impact the global climate.


Asunto(s)
Antioxidantes , Haptophyta , Especies Reactivas de Oxígeno , Sulfuros , Compuestos de Sulfonio , Contaminantes Químicos del Agua , Antioxidantes/metabolismo , Compuestos de Sulfonio/metabolismo , Haptophyta/crecimiento & desarrollo , Haptophyta/metabolismo , Haptophyta/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Clorofila/metabolismo , Superóxido Dismutasa/metabolismo , Nanopartículas/toxicidad , Poliestirenos/toxicidad
13.
BMC Oral Health ; 24(1): 500, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724912

RESUMEN

BACKGROUND: Teeth identification has a pivotal role in the dental curriculum and provides one of the important foundations of clinical practice. Accurately identifying teeth is a vital aspect of dental education and clinical practice, but can be challenging due to the anatomical similarities between categories. In this study, we aim to explore the possibility of using a deep learning model to classify isolated tooth by a set of photographs. METHODS: A collection of 5,100 photographs from 850 isolated human tooth specimens were assembled to serve as the dataset for this study. Each tooth was carefully labeled during the data collection phase through direct observation. We developed a deep learning model that incorporates the state-of-the-art feature extractor and attention mechanism to classify each tooth based on a set of 6 photographs captured from multiple angles. To increase the validity of model evaluation, a voting-based strategy was applied to refine the test set to generate a more reliable label, and the model was evaluated under different types of classification granularities. RESULTS: This deep learning model achieved top-3 accuracies of over 90% in all classification types, with an average AUC of 0.95. The Cohen's Kappa demonstrated good agreement between model prediction and the test set. CONCLUSIONS: This deep learning model can achieve performance comparable to that of human experts and has the potential to become a valuable tool for dental education and various applications in accurately identifying isolated tooth.


Asunto(s)
Aprendizaje Profundo , Diente , Humanos , Diente/anatomía & histología , Diente/diagnóstico por imagen , Fotografía Dental/métodos
14.
Plant Mol Biol ; 114(3): 37, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602592

RESUMEN

Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.


Asunto(s)
Nitratos , Setaria (Planta) , Especies Reactivas de Oxígeno , Nitratos/farmacología , Setaria (Planta)/genética , Peróxido de Hidrógeno , Cloruro de Sodio , Oxígeno , Transducción de Señal , Perfilación de la Expresión Génica , Nitrógeno
15.
Med ; 5(7): 797-815.e2, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38677287

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent in children and adolescents, particularly those with obesity. NAFLD is considered a hepatic manifestation of the metabolic syndrome due to its close associations with abdominal obesity, insulin resistance, and atherogenic dyslipidemia. Experts have proposed an alternative terminology, metabolic dysfunction-associated fatty liver disease (MAFLD), to better reflect its pathophysiology. This study aimed to develop consensus statements and recommendations for pediatric MAFLD through collaboration among international experts. METHODS: A group of 65 experts from 35 countries and six continents, including pediatricians, hepatologists, and endocrinologists, participated in a consensus development process. The process encompassed various aspects of pediatric MAFLD, including epidemiology, mechanisms, screening, and management. FINDINGS: In round 1, we received 65 surveys from 35 countries and analyzed these results, which informed us that 73.3% of respondents agreed with 20 draft statements while 23.8% agreed somewhat. The mean percentage of agreement or somewhat agreement increased to 80.85% and 15.75%, respectively, in round 2. The final statements covered a wide range of topics related to epidemiology, pathophysiology, and strategies for screening and managing pediatric MAFLD. CONCLUSIONS: The consensus statements and recommendations developed by an international expert panel serve to optimize clinical outcomes and improve the quality of life for children and adolescents with MAFLD. These findings emphasize the need for standardized approaches in diagnosing and treating pediatric MAFLD. FUNDING: This work was funded by the National Natural Science Foundation of China (82070588, 82370577), the National Key R&D Program of China (2023YFA1800801), National High Level Hospital Clinical Research Funding (2022-PUMCH-C-014), the Wuxi Taihu Talent Plan (DJTD202106), and the Medical Key Discipline Program of Wuxi Health Commission (ZDXK2021007).


Asunto(s)
Consenso , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Niño , Adolescente , Síndrome Metabólico/epidemiología , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/terapia , Síndrome Metabólico/metabolismo
17.
Mar Environ Res ; 197: 106481, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593647

RESUMEN

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Asunto(s)
Agua de Mar , Compuestos de Sulfonio , Animales , Agua de Mar/química , Azufre/metabolismo , Compuestos de Sulfonio/química , Compuestos de Sulfonio/metabolismo , Sulfuros/metabolismo , Bacterias/metabolismo , Fitoplancton , China , Zooplancton/metabolismo
18.
Plant Physiol ; 195(3): 2309-2322, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38466216

RESUMEN

Soil (or plant) water deficit accelerates plant reproduction. However, the underpinning molecular mechanisms remain unknown. By modulating cell division/number, ABSCISIC ACID-INSENSITIVE 5 (ABI5), a key bZIP (basic (region) leucine zippers) transcription factor, regulates both seed development and abiotic stress responses. The KIP-RELATED PROTEIN (KRP) cyclin-dependent kinases (CDKs) play an essential role in controlling cell division, and SHOOT MERISTEMLESS (STM) plays a key role in the specification of flower meristem identity. Here, our findings show that abscisic acid (ABA) signaling and/or metabolism in adjust reproductive outputs (such as rosette leaf number and open flower number) under water-deficient conditions in Arabidopsis (Arabidopsis thaliana) plants. Reproductive outputs increased under water-sufficient conditions but decreased under water-deficient conditions in the ABA signaling/metabolism mutants abscisic acid2-1 (aba2-1), aba2-11, abscisic acid insensitive3-1 (abi3-1), abi4-1, abi5-7, and abi5-8. Further, under water-deficient conditions, ABA induced-ABI5 directly bound to the promoter of KRP1, which encodes a CDK that plays an essential role in controlling cell division, and this binding subsequently activated KRP1 expression. In turn, KRP1 physically interacted with STM, which functions in the specification of flower meristem identity, promoting STM degradation. We further demonstrate that reproductive outputs are adjusted by the ABI5-KRP1-STM molecular module under water-deficient conditions. Together, our findings reveal the molecular mechanism by which ABA signaling and/or metabolism regulate reproductive development under water-deficient conditions. These findings provide insights that may help guide crop yield improvement under water deficiency.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Abscísico/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Transducción de Señal , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Reproducción , Mutación/genética , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Proteínas de Homeodominio
20.
Inorg Chem ; 63(14): 6276-6284, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38546717

RESUMEN

Molecules with high point-group symmetry are interesting prototype species in the textbook. As transition metal-centered boron clusters tend to have highly symmetric structures to fulfill multicenter bonding and high stability, new boron clusters with rare point-group symmetry may be viable. Through in-depth scrutiny over the structures of experimentally already observed transition metal-centered boron-wheel complexes, geometric and electronic design principles are summarized, based on which we studied M©B11k- (M = Y, La; Zr, Hf; k = 1, 2) clusters and found that a Y©B112- boron-wheel complex has an unprecedented D11h point-group symmetry. The remarkable stability of the planar Y©B112- complex is illustrated via extensive global-minimum structural search as well as comprehensive chemical bonding analyses. Similar to other boron-wheel complexes, the Y©B112- complex is shown to possess σ and π double aromaticity, indeed following the electronic design principle previously summarized. This new compound is expected to be experimentally identified, which will extend the currently known largest possible planar molecular symmetry and enrich the metal-centered boron-wheel class.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA