Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 7(16): 2001155, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32832366

RESUMEN

Continual precision actuations with nanoscale resolution over large ranges have extensive requirements in advanced intelligent manufacturing and precise surgical robots. To produce continual nanostep motion, conventionally, multiple pairs of piezo-actuators are employed to operate in inchworm principle under complex three- or four-phase timing signal drive. Inspired by the idea of ordered structures with functional units, a much simpler nanostep piezoelectric actuator consisting of (2 × 2) arrayed, cofired multilayer piezoceramic actuation units is developed, which operates in an artificially generated quasi shear mode (AGQSM) that is missing in natural piezoelectric ceramics. Under only one-phase square-wave voltage drive, the actuator can produce a stable, continual nanostep motion in two ways at nonresonant frequencies, and the obtained minimum step displacement is as low as 7 nm in open control, indicating its potential application as a precise finger or knife actuator in surgical robots. This work is of great guiding significance for future actuator designs using the methodology of ordered structure with piezoceramic actuation units and AGQSM.

2.
Research (Wash D C) ; 2019: 8232097, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31922139

RESUMEN

Fast actuation with nanoprecision over a large range has been a challenge in advanced intelligent manufacturing like lithography mask aligner. Traditional stacked stage method works effectively only in a local, limited range, and vibration coupling is also challenging. Here, we design a dual mechanism multimodal linear actuator (DMMLA) consisted of piezoelectric and electromagnetic costator and coslider for producing macro-, micro-, and nanomotion, respectively. A DMMLA prototype is fabricated, and each working mode is validated separately, confirming its fast motion (0~50 mm/s) in macromotion mode, micromotion (0~135 µm/s) and nanomotion (minimum step: 0~2 nm) in piezoelectric step and servomotion modes. The proposed dual mechanism design and multimodal motion method pave the way for next generation high-precision actuator development.

3.
Sci Adv ; 5(11): eaax1782, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31976367

RESUMEN

Designing topological and geometrical structures with extended unnatural parameters (negative, near-zero, ultrahigh, or tunable) and counterintuitive properties is a big challenge in the field of metamaterials, especially for relatively unexplored materials with multiphysics coupling effects. For natural piezoelectric ceramics, only five nonzero elements in the piezoelectric matrix exist, which has impeded the design and application of piezoelectric devices for decades. Here, we introduce a methodology, inspired by quasi-symmetry breaking, realizing artificial anisotropy by metamaterial design to excite all the nonzero elements in contrast to zero values in natural materials. By elaborately programming topological structures and geometrical dimensions of the unit elements, we demonstrate, theoretically and experimentally, that tunable nonzero or ultrahigh values of overall effective piezoelectric coefficients can be obtained. While this work focuses on generating piezoelectric parameters of ceramics, the design principle should be inspirational to create unnatural apparent properties of other multiphysics coupling metamaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA