Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 224: 418-435, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241988

RESUMEN

Riboflavin deficiency (RD) induces liver damage, abnormal embryonic development, and high mortality. We hypothesized that the phenotype could be rescued by inhibiting ER stress. The objectives of the present study were to investigate the underlying molecular mechanisms of RD-induced embryonic defects using in vitro and in vivo models. Primary duck embryonic hepatocytes were treated with an ER stress inhibitor (4-PBA) or transfected with CHOP siRNA, and cultured in RD medium and riboflavin-sufficient (CON) medium for 8 days. Laying ducks (n = 20 cages/diet, 1 bird/cage) were fed an RD diet or CON diet for 14 wk, and the eggs were collected for hatching. At day 7 of incubation, the fertilized RD eggs were injected with or without 4-PBA into the yolk. RD decreased cell number and cell viability compared to the CON group, induced oxidative stress and apoptosis in primary duck embryonic hepatocytes. However, after being treated with an ER stress inhibitor (4-PBA) or transfected with CHOP siRNA, the apoptosis rate in RD hepatocytes decreased by 60.6 % and 86.1 %, respectively, being equal to the CON. These results indicated that RD-induced hepatocyte apoptosis is mediated by ER stress and the CHOP pathway. In vivo, RD embryos showed low hatchability, abnormal development, liver damage, ER stress, and apoptosis compared to the CON group. However, 4-PBA administration, as a model of ER stress inhibition, substantially restored embryonic development and alleviated liver damage in the RD group, including ER stress and apoptosis. Notably, hatchability in the RD group increased from 21.7 % to 72.7 % after 4-PBA treatment, though it remained less than the CON group (87.7 %). These results implicated ER stress-CHOP-apoptosis pathway as molecular mechanisms underlying RD-induced abnormal embryonic development and death, this target with potential for therapy or intervention.

3.
Plant Methods ; 20(1): 130, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164761

RESUMEN

Soybean seeds are susceptible to damage from the Riptortus pedestris, which is a significant factor affecting the quality of soybean seeds. Currently, manual screening methods for soybean seeds are limited to visual inspection, making it difficult to identify seeds that are phenotypically defect-free but have been punctured by stink bugs on the sub-surface. To facilitate the convenient and efficient identification of healthy soybean seeds, this paper proposes a soybean seed pest detection method based on spatial frequency domain imaging combined with RL-SVM. Firstly, soybean optical data is obtained using single integration sphere technique, and the vigor index of soybean seeds is obtained through germination experiments. Then, based on the above two data items using feature extraction algorithms (the successive projections algorithm and the competitive adaptive reweighted sampling algorithm), the characteristic wavelengths of soybeans are identified. Subsequently, the spatial frequency domain imaging technique is used to obtain the sub-surface images of soybean seeds in a forward manner, and the optical coefficients such as the reduced scattering coefficient µ ' s and absorption coefficient µ a of soybean seeds are inverted. Finally, RL-MLR, RL-GRNN, and RL-SVM prediction models are established based on the ratio of the area of insect-damaged sub-surface to the entire seed, soybean varieties, and µ a at three wavelengths (502 nm, 813 nm, and 712 nm) for predicting and identifying soybean the stinging and sucking pest damage levels of soybean seeds. The experimental results show that the spatial frequency domain imaging technique yields small errors in the optical coefficients of soybean seeds, with errors of less than 15% for µ a and less than 10% for µ ' s . After parameter adjustment through reinforcement learning, the Macro-Recall metrics of each model have improved by 10%-15%, and the RL-SVM model achieves a high Macro-Recall value of 0.9635 for classifying the pest damage levels of soybean seeds.

4.
Anal Methods ; 16(30): 5248-5253, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39011724

RESUMEN

Cysteine (Cys) is one of the most basic mercaptans in the human body. As an important endogenous small molecule mercaptan, Cys plays a vital role in various physiological processes and can participate in maintaining redox balance to ensure homeostasis. Abnormal Cys levels can lead to a variety of diseases. However, the detection of cysteine may be interfered with by other small molecule biothiols. Therefore, the design of fluorescent probes based on the structural characteristics and reactivity of cysteine has become the focus of current research. In this paper, a fluorescent probe (3-(2H-benzo[d][1,2,3]triazol-2-yl)-2-oxo-2H-benzo[g]chromen-8-yl acrylate, BTAB) for Cys detection was synthesized with acrylic ester as the reaction site. Under the conditions of gradual optimization, BTAB can achieve selectivity and anti-interference ability for Cys detection. The linear range of Cys was 0.3-10 µM, and the detection limit was 0.154 µM. Finally, this probe was applied to detect the Cys content in bovine serum samples with satisfactory results.


Asunto(s)
Cisteína , Colorantes Fluorescentes , Límite de Detección , Espectrometría de Fluorescencia , Cisteína/sangre , Cisteína/química , Colorantes Fluorescentes/química , Bovinos , Animales , Espectrometría de Fluorescencia/métodos
5.
Comput Struct Biotechnol J ; 23: 771-782, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38304549

RESUMEN

Duck hepatitis A virus genotype 3 (DHAV-3) is the major cause of viral hepatitis in ducks in Asia. Previous studies have shown that ducklings younger than 21 days are more susceptible to DHAV-3. To elucidate the mechanism by which age affects the differential susceptibility of Pekin ducks to DHAV-3, intestinal (n = 520), liver (n = 40) and blood (n = 260) samples were collected from control and DHAV-3-infected ducks at 7, 10, 14, and 21 days of age. Comparisons of plasma markers, mortality rates, and intestinal histopathological data showed that the resistance of Pekin ducks to DHAV-3 varied with age. 16 S sequencing revealed that the ileal microbial composition was influenced by age, and this correlation was greater than that recorded for caecal microbes. Candidatus Arthromitus, Bacteroides, Corynebacterium, Enterococcus, Romboutsia, and Streptococcus were the differntially abundant microbes in the ileum at the genus level after DHAV-3 infection and were significantly correlated with 7 differentially expressed genes (DEGs) in 7- and 21-day-old ducklings. 3 immunity-related pathways were significantly different between 7- and 21-day-old ducklings, especially for IFIH1-mediated induction of the interferon-alpha/beta pathway, which induces differential production of CD8(+) T cells and was influenced by a combination of differentially abundant microbiota and DEGs. We found that microbes in the ileum changed regularly with age. The intestinal microbiota was associated with the expression of genes in the liver through IFIH1-mediated induction of the interferon-alpha/beta pathway, which may partially explain why younger ducklings were more susceptible to DHAV-3 infection.

6.
Poult Sci ; 103(3): 103416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301494

RESUMEN

As the most prevalent pathogen of duck viral hepatitis (DVH), duck hepatitis A virus genotype 3 (DHAV-3) has caused huge economic losses to the duck industry in China. Herein, we obtained whole-transcriptome sequencing data of susceptible (S) and resistant (R) Pekin duckling samples at 0 h, 12 h, and 24 h after DHAV-3 infection. We found that DHAV-3 infection induces 5,396 differentially expressed genes (DEGs), 85 differentially expressed miRNAs (DEMs), and 727 differentially expressed lncRNAs (DELs) at 24 hpi in S vs. R ducks, those upregulated genes were enriched in inflammation and cell communications pathways and downregulated genes were related to metabolic processes. Upregulated genes showed high connectivity with the miR-33, miR-193, and miR-11591, and downregulated genes were mainly regulated by miR-2954, miR-125, and miR-146b. With the construction of lncRNA-miRNA-mRNA axis, we further identified a few aberrantly expressed lncRNAs (e.g., MSTRG.36194.1, MSTRG.50601.1, MSTRG.34328.7, and MSTRG.29445.1) that regulate expression of hub genes (e.g., THBD, CLIC2, IL8, ACOX2, GPHN, SMLR1, and HAO1) by sponging those highly connected miRNAs. Altogether, our findings defined a dual role of ncRNAs in immune and metabolic regulation during DHAV-3 infection, suggesting potential new targets for treating DHAV-3 infected ducks.


Asunto(s)
Virus de la Hepatitis del Pato , Hepatitis Viral Animal , MicroARNs , Infecciones por Picornaviridae , ARN Largo no Codificante , Animales , Virus de la Hepatitis del Pato/fisiología , Patos/genética , Transcriptoma , ARN Largo no Codificante/genética , Infecciones por Picornaviridae/veterinaria , Pollos/genética , Genotipo , MicroARNs/genética
7.
Poult Sci ; 103(3): 103374, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295495

RESUMEN

The aim of the experiment was to evaluate the status of innate immunity, oxidative status and lipid accumulation in ducklings exhibiting varying susceptibilities to DHAV-3 infection. In the experiment, ducklings with different DHAV-3 susceptibilities were used. Samples were collected at 6, 12, 15, and 24 h post infection (hpi), with 5 samples per time point. Plasma biochemistry, antioxidant enzyme activities, lipid content of liver and kidney were detected in the experiment. Elevated plasma level of total bilirubin, direct bilirubin, and creatinine indicated the injury of liver and kidney in susceptible ducklings (P < 0.05). The histopathological sections showed the injury in kidney. During the infection time, there was an increase in the concentrations of reactive oxygen species and oxidative damage markers (malondialdehyde and nitric oxide) in plasma of susceptible ducklings, particularly at 24 hpi (P < 0.05). Compared with the resistant ducklings, DHAV-3 infection resulted in a significant increase in the plasma total triglyceride (TG) level and a decrease in glucose level in susceptible ducklings. Gene expression of the innate immune response was both investigated in liver and kidney. In resistant ducklings, the expressions levels of pattern recognition receptors RIG-I, MDA5 remained constant. In contrast, the gene expressions peaked at 24 hpi in the susceptible ducklings. DHAV-3 infection promoted the expression of IFN, IL6, IL12ß, caspase-8 or caspase-9 in both liver and kidney of susceptible ducklings. In conclusion, DHAV-3 infection led to the mobilization of antioxidant defenses, alterations in lipid metabolism, and oxidative stress in susceptible ducklings during DHAV-3 infection.


Asunto(s)
Antioxidantes , Patos , Animales , Metabolismo de los Lípidos , Pollos , Inmunidad Innata , Susceptibilidad a Enfermedades/veterinaria , Bilirrubina , Lípidos
8.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003278

RESUMEN

Common cutworm (CCW) is an omnivorous insect causing severe yield losses in soybean crops. The seedling-stage mini-tray identification system with the damaged leaf percentage (DLP) as an indicator was used to evaluate antixenosis against CCW in the Chinese soybean landrace population (CSLRP) under three environments. Using the innovative restricted two-stage multi-locus genome-wide association study procedure (RTM-GWAS), 86 DLP QTLs with 243 alleles (2-11/QTL) were identified, including 66 main-effect loci with 203 alleles and 57 QTL-environment interaction loci with 172 alleles. Among the main-effect loci, 12 large-contribution loci (R2 ≥ 1%) explained 25.45% of the phenotypic variation (PV), and 54 small-contribution loci (R2 < 1%) explained 16.55% of the PV. This indicates that the CSLRP can be characterized with a DLP QTL-allele system complex that has not been found before, except for a few individual QTLs without alleles involved. From the DLP QTL-allele matrix, the recombination potentials expressed in the 25th percentile of the DLP of all possible crosses were predicted to be reduced by 41.5% as the maximum improvement and 14.2% as the maximum transgression, indicating great breeding potential in the antixenosis of the CSLRP. From the QTLs, 62 candidate genes were annotated, which were involved in eight biological function categories as a gene network of the DLP. Changing from susceptible to moderate plus resistant varieties in the CSLRP, 26 QTLs had 32 alleles involved, in which 19 genes were annotated from 25 QTL-alleles, including eight increased negative alleles on seven loci and 11 decreased positive alleles on 11 loci, showing the major genetic constitution changes for the antixenosis enhancement at the seedling stage in the CSLRP.


Asunto(s)
Glycine max , Plantones , Animales , Spodoptera/genética , Alelos , Glycine max/genética , Plantones/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Fitomejoramiento , Fenotipo
9.
Nat Commun ; 14(1): 6813, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884530

RESUMEN

Shading in combination with extended photoperiods can cause exaggerated stem elongation (ESE) in soybean, leading to lodging and reduced yields when planted at high-density in high-latitude regions. However, the genetic basis of plant height in adaptation to these regions remains unclear. Here, through a genome-wide association study, we identify a plant height regulating gene on chromosome 13 (PH13) encoding a WD40 protein with three main haplotypes in natural populations. We find that an insertion of a Ty1/Copia-like retrotransposon in the haplotype 3 leads to a truncated PH13H3 with reduced interaction with GmCOP1s, resulting in accumulation of STF1/2, and reduced plant height. In addition, PH13H3 allele has been strongly selected for genetic improvement at high latitudes. Deletion of both PH13 and its paralogue PHP can prevent shade-induced ESE and allow high-density planting. This study provides insights into the mechanism of shade-resistance and offers potential solutions for breeding high-yielding soybean cultivar for high-latitude regions.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Glycine max/genética , Fitomejoramiento , Fenotipo , Retroelementos
10.
Front Plant Sci ; 14: 1181322, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560031

RESUMEN

Soybean is an important grain and oil crop worldwide and is rich in nutritional value. Phenotypic morphology plays an important role in the selection and breeding of excellent soybean varieties to achieve high yield. Nowadays, the mainstream manual phenotypic measurement has some problems such as strong subjectivity, high labor intensity and slow speed. To address the problems, a three-dimensional (3D) reconstruction method for soybean plants based on structure from motion (SFM) was proposed. First, the 3D point cloud of a soybean plant was reconstructed from multi-view images obtained by a smartphone based on the SFM algorithm. Second, low-pass filtering, Gaussian filtering, Ordinary Least Square (OLS) plane fitting, and Laplacian smoothing were used in fusion to automatically segment point cloud data, such as individual plants, stems, and leaves. Finally, Eleven morphological traits, such as plant height, minimum bounding box volume per plant, leaf projection area, leaf projection length and width, and leaf tilt information, were accurately and nondestructively measured by the proposed an algorithm for leaf phenotype measurement (LPM). Moreover, Support Vector Machine (SVM), Back Propagation Neural Network (BP), and Back Propagation Neural Network (GRNN) prediction models were established to predict and identify soybean plant varieties. The results indicated that, compared with the manual measurement, the root mean square error (RMSE) of plant height, leaf length, and leaf width were 0.9997, 0.2357, and 0.2666 cm, and the mean absolute percentage error (MAPE) were 2.7013%, 1.4706%, and 1.8669%, and the coefficients of determination (R2) were 0.9775, 0.9785, and 0.9487, respectively. The accuracy of predicting plant species according to the six leaf parameters was highest when using GRNN, reaching 0.9211, and the RMSE was 18.3263. Based on the phenotypic traits of plants, the differences between C3, 47-6 and W82 soybeans were analyzed genetically, and because C3 was an insect-resistant line, the trait parametes (minimum box volume per plant, number of leaves, minimum size of single leaf box, leaf projection area).The results show that the proposed method can effectively extract the 3D phenotypic structure information of soybean plants and leaves without loss which has the potential using ability in other plants with dense leaves.

12.
Funct Integr Genomics ; 23(3): 217, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392308

RESUMEN

Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.


Asunto(s)
Fabaceae , Animales , Fabaceae/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Agricultura , Insectos/genética
13.
Theor Appl Genet ; 136(7): 152, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37310498

RESUMEN

KEY MESSAGE: Fifty-three shade tolerance genes with 281 alleles in the SCSGP were identified directly using gene-allele sequence as markers in RTM GWAS, from which optimized crosses, evolutionary motivators, and gene-allele networks were explored. Shade tolerance is a key for optimal cultivation of soybean inter/relay-cropped with corn. To explore the shade tolerance gene-allele system in the southern China soybean germplasm, we proposed using gene-allele sequence markers (GASMs) in a restricted two-stage multi-locus model genome-wide association study (GASM-RTM-GWAS). A representative sample with 394 accessions was tested for their shade tolerance index (STI), in Nanning, China. Through whole-genome re-sequencing, 47,586 GASMs were assembled. From GASM-RTM-GWAS, 53 main-effect STI genes with 281 alleles (2-13 alleles/gene) (totally 63 genes with 308 alleles, including 38 G × E genes with 191 alleles) were identified and then organized into a gene-allele matrix composed of eight submatrices corresponding to geo-seasonal subpopulations. The population featured mild STI changes (1.69 → 1.56-1.82) and mild gene-allele changes (92.5% alleles inherited, 0% alleles excluded, 7.5% alleles emerged) from the primitive (SAIII) to the derived seven subpopulations, but large transgressive recombination potentials and optimal crosses were predicted. The 63 STI genes were annotated into six biological categories (metabolic process, catalytic activity, response to stresses, transcription and translation, signal transduction and transport and unknown functions), interacted as gene networks. From the STI gene-allele system, 38 important alleles of 22 genes were nominated for further in-depth study. GASM-RTM-GWAS performed powerful and efficient in germplasm population genetic study comparing to other procedures through facilitating direct and thorough identification of its gene-allele system, from which genome-wide breeding by design could be achieved, and evolutionary motivators and gene-allele networks could be explored.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Alelos , Glycine max/genética , Fitomejoramiento , China
14.
Genes (Basel) ; 14(6)2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37372434

RESUMEN

The J-protein family comprises molecular chaperones involved in plant growth, development, and stress responses. Little is known about this gene family in soybean. Hence, we characterized J-protein genes in soybean, with the most highly expressed and responsive during flower and seed development. We also revealed their phylogeny, structure, motif analysis, chromosome location, and expression. Based on their evolutionary links, we divided the 111 potential soybean J-proteins into 12 main clades (I-XII). Gene-structure estimation revealed that each clade had an exon-intron structure resembling or comparable to others. Most soybean J-protein genes lacked introns in Clades I, III, and XII. Moreover, transcriptome data obtained from a publicly accessible soybean database and RT-qPCR were used to examine the differential expression of DnaJ genes in various soybean tissues and organs. The expression level of DnaJ genes indicated that, among 14 tissues, at least one tissue expressed the 91 soybean genes. The findings suggest that J-protein genes could be involved in the soybean growth period and offer a baseline for further functional research into J-proteins' role in soybean. One important application is the identification of J-proteins that are highly expressed and responsive during flower and seed development in soybean. These genes likely play crucial roles in these processes, and their identification can contribute to breeding programs to improve soybean yield and quality.


Asunto(s)
Glycine max , Proteínas del Choque Térmico HSP40 , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Plantas/metabolismo , Fitomejoramiento , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Crecimiento y Desarrollo
15.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298521

RESUMEN

In soybeans (Glycine max (L.) Merr.), their growth periods, DSF (days of sowing-to-flowering), and DFM (days of flowering-to-maturity) are determined by their required accumulative day-length (ADL) and active temperature (AAT). A sample of 354 soybean varieties from five world eco-regions was tested in four seasons in Nanjing, China. The ADL and AAT of DSF and DFM were calculated from daily day-lengths and temperatures provided by the Nanjing Meteorological Bureau. The improved restricted two-stage multi-locus genome-wide association study using gene-allele sequences as markers (coded GASM-RTM-GWAS) was performed. (i) For DSF and its related ADLDSF and AATDSF, 130-141 genes with 384-406 alleles were explored, and for DFM and its related ADLDFM and AATDFM, 124-135 genes with 362-384 alleles were explored, in a total of six gene-allele systems. DSF shared more ADL and AAT contributions than DFM. (ii) Comparisons between the eco-region gene-allele submatrices indicated that the genetic adaptation from the origin to the geographic sub-regions was characterized by allele emergence (mutation), while genetic expansion from primary maturity group (MG)-sets to early/late MG-sets featured allele exclusion (selection) without allele emergence in addition to inheritance (migration). (iii) Optimal crosses with transgressive segregations in both directions were predicted and recommended for breeding purposes, indicating that allele recombination in soybean is an important evolutionary drive. (iv) Genes of the six traits were mostly trait-specific involved in four categories of 10 groups of biological functions. GASM-RTM-GWAS showed potential in detecting directly causal genes with their alleles, identifying differential trait evolutionary drives, predicting recombination breeding potentials, and revealing population gene networks.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Glycine max/genética , Alelos , Desequilibrio de Ligamiento , Sitios de Carácter Cuantitativo , Fitomejoramiento , Polimorfismo de Nucleótido Simple
16.
J Integr Plant Biol ; 65(7): 1734-1752, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36916709

RESUMEN

Although seed weight has increased following domestication from wild soybean (Glycine soja) to cultivated soybean (Glycine max), the genetic basis underlying this change is unclear. Using mapping populations derived from chromosome segment substitution lines of wild soybean, we identified SW16.1 as the causative gene underlying a major quantitative trait locus controlling seed weight. SW16.1 encodes a nucleus-localized LIM domain-containing protein. Importantly, the GsSW16.1 allele from wild soybean accession N24852 had a negative effect on seed weight, whereas the GmSW16.1 allele from cultivar NN1138-2 had a positive effect. Gene expression network analysis, reverse-transcription quantitative polymerase chain reaction, and promoter-luciferase reporter transient expression assays suggested that SW16.1 regulates the transcription of MT4, a positive regulator of seed weight. The natural variations in SW16.1 and other known seed weight genes were analyzed in soybean germplasm. The SW16.1 polymorphism was associated with seed weight in 247 soybean accessions, showing much higher frequency of positive-effect alleles in cultivated soybean than in wild soybean. Interestingly, gene allele matrix analysis of the known seed weight genes revealed that G. max has lost 38.5% of the G. soja alleles and that most of the lost alleles had negative effects on seed weight. Our results suggest that eliminating negative alleles from G. soja led to a higher frequency of positive alleles and changed genetic backgrounds in G. max, which contributed to larger seeds in cultivated soybean after domestication from wild soybean. Our findings provide new insights regarding soybean domestication and should assist current soybean breeding programs.


Asunto(s)
Fabaceae , Glycine max , Glycine max/genética , Alelos , Domesticación , Fitomejoramiento , Semillas/genética
17.
J Integr Plant Biol ; 65(3): 838-853, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36330964

RESUMEN

Soybean mosaic virus (SMV) is one of the most devastating viral pathogens of soybean (Glycine max (L.) Merr). In total, 22 Chinese SMV strains (SC1-SC22) have been classified based on the responses of 10 soybean cultivars to these pathogens. However, although several SMV-resistance loci in soybean have been identified, no gene conferring SMV resistance in the resistant soybean cultivar (cv.) Kefeng No.1 has been cloned and verified. Here, using F2 -derived F3 (F2:3 ) and recombinant inbred line (RIL) populations from a cross between Kefeng No.1 and susceptible soybean cv. Nannong 1138-2, we localized the gene in Kefeng No.1 that mediated resistance to SMV-SC3 strain to a 90-kb interval on chromosome 2. To study the functions of candidate genes in this interval, we performed Bean pod mottle virus (BPMV)-induced gene silencing (VIGS). We identified a recombinant gene (which we named RSC3 K) harboring an internal deletion of a genomic DNA fragment partially flanking the LOC100526921 and LOC100812666 reference genes as the SMV-SC3 resistance gene. By shuffling genes between infectious SMV DNA clones based on the avirulent isolate SC3 and virulent isolate 1129, we determined that the viral protein P3 is the avirulence determinant mediating SMV-SC3 resistance on Kefeng No.1. P3 interacts with RNase proteins encoded by RSC3 K, LOC100526921, and LOC100812666. The recombinant RSC3 K conveys much higher anti-SMV activity than LOC100526921 and LOC100812666, although those two genes also encode proteins that inhibit SMV accumulation, as revealed by gene silencing in a susceptible cultivar and by overexpression in Nicotiana benthamiana. These findings demonstrate that RSC3 K mediates the resistance of Kefeng No.1 to SMV-SC3 and that SMV resistance of soybean is determined by the antiviral activity of RNase proteins.


Asunto(s)
Glycine max , Potyvirus , Glycine max/genética , Proteínas Virales , Potyvirus/genética , Ribonucleasas , Enfermedades de las Plantas/genética
18.
Sci China Life Sci ; 66(2): 350-365, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35997916

RESUMEN

Soybean is a leguminous crop that provides oil and protein. Exploring the genomic signatures of soybean evolution is crucial for breeding varieties with improved adaptability to environmental extremes. We analyzed the genome sequences of 2,214 soybeans and proposed a soybean evolutionary route, i.e., the expansion of annual wild soybean (Glycine soja Sieb. & Zucc.) from southern China and its domestication in central China, followed by the expansion and local breeding selection of its landraces (G. max (L.) Merr.). We observed that the genetic introgression in soybean landraces was mostly derived from sympatric rather than allopatric wild populations during the geographic expansion. Soybean expansion and breeding were accompanied by the positive selection of flowering time genes, including GmSPA3c. Our study sheds light on the evolutionary history of soybean and provides valuable genetic resources for its future breeding.


Asunto(s)
Glycine max , Fitomejoramiento , Glycine max/genética , Genoma de Planta/genética , Sitios de Carácter Cuantitativo , China
19.
Front Plant Sci ; 13: 936039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330264

RESUMEN

Corn is one of the key grain crops in China and the excessive use of chemical fertilizers and pesticides seriously damages the ecological environment in fields. To explore a more scientific and reasonable way to plant corn and simultaneously reduce the overuse of chemical fertilizers and pesticides, the impact of corn intercropping with soybean, peanut, and millet, respectively, through five planting patterns, including three intercropping patterns (2 corn rows to 2, 3 and 4 rows of soybean/peanut or 2, 4 and 6 millet rows, respectively) and two monoculture patterns of corn and soybean, peanut or millet under normal (600 kg/ha) and reduced (375 kg/ha) levels of NPK (N:P2O5:K2O = 15:15:15) fertilization on the population abundance and community diversity of insects, leaf nutrients, and induced plant hormones jasmonic acid (JA) and salicylic acid (SA) was studied in 2018 and 2019. The results showed that the insect community indexes of the species number (S), the diversity index (H), and the uniformity index (E) generally increased under intercropping and were significantly higher than those under corn monoculture. The prevalence of Asian corn borer (Ostrinia furnacalis) on the intercropping corn plants decreased by based on the average of seven surveys per year for each treatment 2.9 to 17 heads per 30 plants compared with that on the monoculture corn plants. The number of natural enemy insect species on corn plants under intercropping was significantly higher than that under corn monoculture. That is, intercropping may decrease the population of Asian corn borers by increasing S, H, E, and natural enemy insect species (NEI). Moreover, intercropping type and fertilizer level significantly affected corn leaf nutrient contents. Compared with the normal fertilizer level, fertilizer reduction significantly reduced the foliar contents of amino acids, soluble protein, and soluble sugar in corn plants. In addition, corn-soybean and corn-peanut intercropping significantly increased the three nutrient contents in corn leaves compared with corn monoculture. In terms of corn nutrients, intercropping could compensate for the effects of fertilizer reduction. The foliar content of JA in corn-soybean intercropping was significantly higher than in corn monoculture. Under corn-soybean and corn-peanut intercropping, SA was significantly lower than under corn monoculture. Overall, intercropping, not fertilizer reduction, can significantly increase insect community diversity while reducing the population abundances of the key insect pest species on corn plants. Intercropping reduced the SA content, increased amino acids and thus reduced the susceptibility of corn to the pest insects.

20.
Theor Appl Genet ; 135(12): 4261-4275, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36203035

RESUMEN

KEY MESSAGE: A leaflet trait on different canopy layers may have different QTLs; leaflet trait QTLs may cluster to form joint QTL segments; all canopy layer QTLs form a complete QTL system for a leaflet trait. As the main part of the plant canopy structure, leaf/leaflet size and shape affect the plant architecture and yield. To explore the leaflet trait QTL system, a population composed of 199 recombinant inbred lines derived from Changling (annual wild, narrow leaflet) and Yiqianli (landrace, broad leaflet) with their parents was tested for leaflet length (LL), width (LW) and length to width (LLW). The population was genotyped with specific-locus amplified fragment sequencing (SLAF-seq) and applied for linkage mapping of the leaflet traits. The results showed that the leaflet traits varied greatly even within a plant, which supported a stratified leaflet sampling strategy to evaluate these traits at top, middle and bottom canopy layers. Altogether, 13 LL, 10 LW and 9 LLW in a total of 32 plus 3 duplicated QTLs were identified, in which, 17 QTLs were new ones, and 48.6%, 28.6% and 22.8% of QTLs were from the top, middle and bottom layers, respectively, indicating the genetic importance of the top layer leaves. Since a leaflet trait may have layer-specific QTLs, all layer QTLs form a complete QTL system. Five QTL clusters each with their QTL supporting intervals overlapped were designated as joint QTL segments (JQSs). In JQS-16, with its linkage map further validated using PCR markers, two QTLs, qLW-16-1 and qLLW-16-1 of the top layer leaflet, were identified six QTL·times. Six candidate genes were predicted, with Glyma.16G127900 as the most potential one for LW and LLW. Three PCR markers, Gm16PAV0653, BARCSOYSSR_16_0796 and YC-16-3, were suggested for marker-assisted selection for LW and LLW in JQS-16.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Glycine max/genética , Mapeo Cromosómico/métodos , Fenotipo , Genotipo , Ligamiento Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA