Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genet Test Mol Biomarkers ; 27(12): 384-392, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38156907

RESUMEN

Background: RNA-binding motif proteins (RBMs) have been widely implicated in the tumorigenesis of multiple human cancers but rarely investigated in glioblastoma (GBM). Methods: The expression level of RBM47 and its correlation with prognosis of GBM were examined using bioinformatics, quantitative reverse transcription PCR, and Western blot analysis. The colony formation assay and Cell Counting Kit-8 assay were used to determine the biological role of RBM47 in GBM. To measure invasiveness we used the wound healing assay and transwell assay. The regulatory relationship between RBM47 and the epithelial-to-mesenchymal transition (EMT) was examined by Western blot analysis and bioinformatic analysis. Results: Through integrative analysis of clinical proteomic and genomic tumor datasets, we found that RBM47 is significantly upregulated in GBM mesenchymal subtype, and its high expression is correlated with poor prognosis. In in vitro biological experiments, we observed a significant inhibitory effect of RBM47 knockdown on colony formation and cell growth using GBM cell lines. Conversely, overexpression of RBM47 restored and accelerated these processes. Moreover, in vitro, wound healing assays demonstrated the role of RBM46 in promoting and cell migration and invasion. Mechanistically, RBM47 enhances invasive capacity through the activation of the EMT program. In RBM47-knockdown cells, the expression levels of Vimentin and CD44 were suppressed, and the level of E-cadherin was increased. Conclusions: Taken together our results demonstrate the tumor promoting characteristics of RBM46 and suggest that it could be used both as a therapeutic target and prognostically.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Línea Celular Tumoral , Proteómica , Movimiento Celular/genética , Invasividad Neoplásica/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Int J Biol Macromol ; 253(Pt 7): 127463, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37852397

RESUMEN

Variations in the structure and activities of polysaccharides from Tetrastigma hemsleyanum Diels et Gilg fermented by Sanghuangporus sanghuang fungi were investigated. Compare with the unfermented polysaccharide (THDP2), the major monosaccharide composition and molecular weight of polysaccharide after fermentation (F-THDP2) altered dramatically, which caused galactose-induced conversion from glucose and one-third of molecular weight. F-THDP2 had a molecular weight of 1.23 × 104 Da. Moreover, the glycosidic linkage of F-THDP2 varied significantly, a 1, 2-linked α-d-Galp and 1, 2-linked α-d-Manp backbone was established in F-THDP2, which differed from that of 1, 4-linked α-d-Glcp and 1, 4-linked ß-d-Galp in THDP2. In addition, F-THDP2 showed a more flexible chain conformation than that of THDP2 in aqueous solution. Strikingly, F-THDP2 exhibited superior inhibitory effects on HeLa cells via Fas/FasL-mediated Caspase-3 signaling pathways than that of the original polysaccharide. These variations in both structure and biological activities indicated that fermentation-mediated modification by Sanghuangporus sanghuang might a promising novel method for the effective conversion of starch and other polysaccharides from Tetrastigma hemsleyanum Diels et Gilg into highly bioactive biomacromolecules, which could be developed as a potential technology for use in the food industry.


Asunto(s)
Polisacáridos , Vitaceae , Humanos , Células HeLa , Fermentación , Polisacáridos/farmacología , Polisacáridos/química , Vitaceae/química
3.
Neurosurg Rev ; 45(6): 3565-3571, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36214907

RESUMEN

The treatment of intracranial aneurysms (IAs) has undergone a very significant transformation in recent decades, and endovascular interventions have gradually become one of the most common treatments. As permanent metal stents can cause some degree of long-term damage to patients, biodegradable stent materials are emerging as attractive potential alternatives. By reviewing the current research status and the advantages and disadvantages of existing biodegradable biomaterials, this review expects to provide a valuable reference for subsequent research on biodegradable biomaterials.


Asunto(s)
Aneurisma Intracraneal , Stents , Humanos , Aneurisma Intracraneal/cirugía , Materiales Biocompatibles , Aleaciones
4.
Front Nutr ; 9: 1058131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618684

RESUMEN

A biomacromolecule, named as ß-galactoglucofurannan (SVPS2), was isolated from the cultivated parts of Sanghuangporus vaninii under the forest. Its primary and advanced structure was analyzed by a series of techniques including GC-MS, methylation, NMR, MALS as well as AFM. The results indicated that SVPS2 was a kind of 1, 5-linked ß-Glucofurannan consisting of ß-glucose, ß-galactose and α-fucose with 23.4 KDa. It exhibited a single-stranded chain with an average height of 0.72 nm in saline solution. The immunostimulation test indicated SVPS2 could facilitate the initiation of the immune reaction and promote the secretion of cytokines in vitro. Moreover, SVPS2 could mediate the apoptosis of HT-29 cells by blocking them in S phase. Western blot assay revealed an upregulation of Bax, Cytochrome c and cleaved caspase-3 by SVPS2, accompanied by a downregulation of Bcl-2. These results collectively demonstrate that antitumor mechanism of SVPS2 may be associated with enhancing immune response and inducing apoptosis of tumor cells in vitro. Therefore, SVPS2 might be utilized as a promising therapeutic agent against colon cancer and functional food with immunomodulatory activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...