Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Lett ; 397: 79-88, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734220

RESUMEN

The activation of pregnane X receptor (PXR) or peroxisome proliferator-activated receptor α (PPARα) can induce liver enlargement. Recently, we reported that PXR or PPARα activation-induced hepatomegaly depends on yes-associated protein (YAP) signaling and is characterized by hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. However, it remains unclear whether PXR or PPARα activation-induced hepatomegaly can be reversed after the withdrawal of their agonists. In this study, we investigated the regression of enlarged liver to normal size following the withdrawal of PCN or WY-14643 (typical agonists of mouse PXR or PPARα) in C57BL/6 mice. The immunohistochemistry analysis of CTNNB1 and KI67 showed a reversal of hepatocyte size and a decrease in hepatocyte proliferation after the withdrawal of agonists. In details, the expression of PXR or PPARα downstream proteins (CYP3A11, CYP2B10, ACOX1, and CYP4A) and the expression of proliferation-related proteins (CCNA1, CCND1, and PCNA) returned to the normal levels. Furthermore, YAP and its downstream proteins (CTGF, CYR61, and ANKRD1) also restored to the normal states, which was consistent with the change in liver size. These findings demonstrate the reversibility of PXR or PPARα activation-induced hepatomegaly and provide new data for the safety of PXR and PPARα as drug targets.


Asunto(s)
Proliferación Celular , Hepatocitos , Hepatomegalia , Hígado , Ratones Endogámicos C57BL , PPAR alfa , Receptor X de Pregnano , Pirimidinas , Proteínas Señalizadoras YAP , Animales , PPAR alfa/agonistas , PPAR alfa/metabolismo , Hepatomegalia/inducido químicamente , Hepatomegalia/metabolismo , Hepatomegalia/patología , Receptor X de Pregnano/metabolismo , Receptor X de Pregnano/genética , Proteínas Señalizadoras YAP/metabolismo , Pirimidinas/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Proliferación Celular/efectos de los fármacos , beta Catenina/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Citocromo P-450 CYP4A/metabolismo , Citocromo P-450 CYP4A/genética , Familia 4 del Citocromo P450/genética , Familia 4 del Citocromo P450/metabolismo , Ratones , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Antígeno Ki-67/metabolismo , Proteínas de la Membrana , Esteroide Hidroxilasas , Familia 2 del Citocromo P450 , Citocromo P-450 CYP3A , Hidrocarburo de Aril Hidroxilasas
2.
Anal Chim Acta ; 1263: 341268, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37225332

RESUMEN

The quantitative analysis of drug plasma samples plays an important role in the drug development and drug clinical use. Our research team developed a new electrospray ion source-Micro probe electrospray ionization (µPESI) in the early stage, which was combined with mass spectrometry (µPESI-MS/MS) showing good qualitative and quantitative analysis performance. However, matrix effect severely interfered the sensitivity in µPESI-MS/MS analysis. To solve this problem, we recently developed a Solid-phase purification method based on multi-walled carbon nanotubes (MWCNTs), which was used for removing matrix interfering substances (especially phospholipid compounds) in the preparation of plasma samples, so as to reduce the matrix effect. In this study, aripiprazole (APZ), carbamazepine (CBZ) and omeprazole (OME) were used as representative analytes, the quantitative analysis related to the plasma samples spiked with the analytes above and the mechanism of the MWCNTs to reduce matrix effect were both investigated. Compared with the ordinary protein precipitation, MWCNTs could reduced the matrix effect for several to dozens of times, which resulting from the removement of phospholipid compounds from the plasma samples by MWCNTs in the selective adsorption manner. We further validated the linearity, precision and accuracy of this pretreatment technique by the µPESI-MS/MS method. These parameters all met the requirements of FDA guidelines. It was showed that MWCNTs have a good application prospect in the drug quantitative analysis of plasma samples using the µPESI-ESI-MS/MS method.


Asunto(s)
Nanotubos de Carbono , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Adsorción , Fosfolípidos
3.
J Control Release ; 354: 196-206, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36610480

RESUMEN

Reactive oxygen species (ROS) generation to induce cell death is an effective strategy for cancer therapy. In particular, chemodynamic therapy (CDT), using Fenton-type reactions to generate highly cytotoxic hydroxyl radical (•OH), is a promising treatment modality. However, the therapeutic efficacy of ROS-based cancer treatment is still limited by some critical challenges, such as overexpression of enzymatic and non-enzymatic antioxidants by tumor cells, as well as the low tumor targeting efficiency of therapeutic agents. To address those problems, biomimetic CuZn protoporphyrin IX nanoscale coordination polymers have been developed, which significantly amplify oxidative stress against tumors by simultaneously inhibiting enzymatic and non-enzymatic antioxidants and initiating the CDT. In this design, cancer cell membrane camouflaged nanoparticle exhibits an excellent homotypic targeting effect. After being endocytosed into tumor cells, the nanoparticles induce depletion of the main non-enzymatic antioxidant glutathione (GSH) by undergoing a redox reaction with GSH. Afterward, the redox reaction generated cuprous ion (Cu+) works as a CDT agent for •OH generation. Furthermore, the released Zn protoporphyrin IX strongly inhibits the activity of the typical enzymatic antioxidant heme oxygenase-1. This tetra-modal synergistic strategy endows the biomimetic nanoparticles with great capability for anticancer therapy, which has been demonstrated in both in vitro and in vivo studies.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Antioxidantes , Especies Reactivas de Oxígeno , Glutatión , Estrés Oxidativo , Biomimética , Línea Celular Tumoral , Peróxido de Hidrógeno , Microambiente Tumoral
4.
Biomaterials ; 281: 121357, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34999538

RESUMEN

Nanoscale extracellular vesicles (EVs) represent a unique cellular derivative that reflect the therapeutic potential of mesenchymal stem cells (MSCs) toward tissue engineering and injury repair without the logistical and safety concerns of utilizing living cells. However, upon systemic administration in vivo,EVs undergo rapid clearance and typically lack controlled targeted delivery, thus reducing their effectiveness in therapeutic regenerative therapies. Here, we describe a strategy that enables long-term in vivo spatial EV retention by chemoselective immobilization of metabolically incoporated azido ligand-bearing EVs (azido-EVs) within a dibenzocyclooctyne-modified collagen hydrogel. MSC-derived azido-EVs exhibit comparable morphological and functional properties as their non-labeled EV counterparts and, when immobilized within collagen hydrogel implants via click chemistry, they elicited more robust host cell infiltration, angiogenic and immunoregulatory responses including vascular ingrowth and macrophage recruitment compared to ten times the higher dose required by non-immobilized EVs. We envision this technology will enable a wide range of applications to spatially promote vascularization and host integration relevant to tissue engineering and regenerative medicine applications.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Materiales Biocompatibles , Hidrogeles , Medicina Regenerativa
5.
Front Cell Dev Biol ; 9: 639299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968926

RESUMEN

As the material transportation system of the human body, the vascular network carries the transportation of materials and nutrients. Currently, the construction of functional microvascular networks is an urgent requirement for the development of regenerative medicine and in vitro drug screening systems. How to construct organs with functional blood vessels is the focus and challenge of tissue engineering research. Here in this review article, we first introduced the basic characteristics of blood vessels in the body and the mechanism of angiogenesis in vivo, summarized the current methods of constructing tissue blood vessels in vitro and in vivo, and focused on comparing the functions, applications and advantages of constructing different types of vascular chips to generate blood vessels. Finally, the challenges and opportunities faced by the development of this field were discussed.

6.
Bio Protoc ; 11(4): e3922, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33732809

RESUMEN

Decellularized extracellular matrix (ECM) biomaterials derived from native tissues and organs are widely used for tissue engineering and wound repair. To boost their regenerative potential, ECM biomaterials can be functionalized via the immobilization of bioactive molecules. To enable ECM functionalization in a chemoselective manner, we have recently reported an effective approach for labeling native organ ECM with the click chemistry-reactive azide ligand via physiologic post-translational glycosylation. Here, using the rat lung as a model, we provide a detailed protocol for in vivo and ex vivo metabolic azide labeling of the native organ ECM using N-Azidoacetylgalactosamine-tetraacylated (Ac4GalNAz), together with procedures for decellularization and labeling characterization. Our approach enables specific and robust ECM labeling within three days in vivo or within one day during ex vivo organ culture. The resulting ECM labeling remains stable following decellularization. With our approach, ECM biomaterials can be functionalized with desired alkyne-modified biomolecules, such as growth factors and glycosaminoglycans, for tissue engineering and regenerative applications.

7.
Onco Targets Ther ; 9: 5257-70, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27601918

RESUMEN

Proliferation, growth, and differentiation of cells are strictly controlled by the signal system of epidermal growth factor receptor (EGFR). If any link of the EGFR signals system is interfered with or damaged, the proliferation, growth, and differentiation of cells would become uncontrolled. EGFR is overexpressed in a variety of malignant tumors, such as non-small-cell lung cancer, colorectal cancer and breast cancer. Results of the study have proved that EGFR overexpression is closely associated with mutations and variants of the EGFR genes, whose mutations and variants are associated with occurrence, metastasis, and prognosis of different types of tumors, including lung cancer. This study is aimed at investigating whether the polymorphisms of CA simple sequence repeat in intron 1 (CA-SSR1), -216G/T, and R497K in the EGFR are able to induce EGFR activation and whether overexpression is associated with pleural metastasis of lung adenocarcinoma. A total of 432 lung adenocarcinoma patients with pleural metastasis (metastasis group) and 424 patients with lung adenocarcinoma but without pleural metastasis (nonmetastasis group) were enrolled in this study. For all patients, the CA-SSR1 genotypes were determined by capillary electrophoresis, polymerase chain reaction amplification, and direct DNA sequencing, and the R497K and -216G/T genotypes were determined by polymerase chain reaction amplification and direct DNA sequencing. EGFR expression was evaluated by immunohistochemical staining in primary tumor tissues with different -216G/T, R497K, and CA-SSR1 genotypes. Our results showed significant differences between pleural metastasis and nonmetastasis groups in the genotype and allele distribution of -216G/T, R497K, and CA-SSR1 polymorphisms of the EGFR gene. The -216T allele, Arg allele, and shorter CA-SSR1 (<17) had significantly increased risks of pleural metastasis compared with the -216G allele, Lys allele, and longer CA-SSR1 (≥17), respectively. The expression of EGFR was higher in patients with genotypes of -216T/T or -216G/T, Arg/Arg or Arg/Lys, and shorter CA-SSR1 (<17) than that in patients with genotypes of -216G/G, Lys/Lys, and longer CA-SSR1 (≥17), respectively. These results indicate that -216G/T, R497K, and CA-SSR1 polymorphisms are associated with the risk of pleural metastasis of lung adenocarcinoma, which may be related to the overexpression of EGFR protein induced by -216G/T, R497K, and CA-SSR1 polymorphisms.

8.
Oncol Lett ; 6(3): 693-698, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24137392

RESUMEN

Numerous mutations and variants in the epidermal growth factor receptor (EGFR) gene have been demonstrated to be associated with the occurrence, metastasis and prognosis of various types of tumors, including lung cancer. Thus, the present study aimed to investigate whether -216G/T (rs712829), a functional polymorphism of the EGFR promoter that is able to induce EGFR activation and overexpression, is associated with the pleural metastasis of lung adenocarcinoma. The study subjects were comprised of 326 patients with primary lung adenocarcinoma and 312 matched cases with pleural metastasis. The -216G/T genotypes were determined in all subjects by PCR amplification and direct DNA sequencing, and EGFR expression was also evaluated by immunohistochemical staining in the primary tumor tissues with various -216G/T genotype backgrounds. The results showed that the frequencies of allele T and genotypes G/T and T/T in the pleural metastasis group were significantly higher compared with those in the non-metastasis group, with adjusted ORs of 1.46 (95% CI, 1.015-1.963) for G/T and 1.97 (95% CI, 1.051-3.152) for T/T. Furthermore, the expression of the EGFR protein was higher in the primary lung adenocarcinoma tissues with -216T/T and -216G/T compared with those with -216G/G (P<0.05). These results collectively indicate that the -216G/T polymorphism in the EGFR promoter is associated with the risk of the pleural metastasis of lung adenocarcinoma and that this effect may be associated with -216G/T-induced overexpression of the EGFR protein.

9.
J Phys Condens Matter ; 25(20): 205304, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23615899

RESUMEN

Phase relaxation of electrons transferring through an electromechanical transistor is studied using the Aharonov-Bohm interferometer. Using the quantum master equation approach, the phase properties of an electron are numerically analyzed based on the interference fringes. The coherence of the electron is partially destroyed by its scattering on excited levels of the local nanomechanical oscillator. The transmission amplitudes with respect to two adjacent mechanical vibrational levels have a phase difference of π. The character of the π phase shift depends on the oscillator frequency only and is robust over a wide range of values of the applied voltage, tunneling length and damping rate of the mechanical oscillator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...