Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Research (Wash D C) ; 7: 0379, 2024.
Article En | MEDLINE | ID: mdl-38779490

Cement-based materials are the foundation of modern buildings but suffer from intensive energy consumption. Utilizing cement-based materials for efficient energy storage is one of the most promising strategies for realizing zero-energy buildings. However, cement-based materials encounter challenges in achieving excellent electrochemical performance without compromising mechanical properties. Here, we introduce a biomimetic cement-based solid-state electrolyte (labeled as l-CPSSE) with artificially organized layered microstructures by proposing an in situ ice-templating strategy upon the cement hydration, in which the layered micropores are further filled with fast-ion-conducting hydrogels and serve as ion diffusion highways. With these merits, the obtained l-CPSSE not only presents marked specific bending and compressive strength (2.2 and 1.2 times that of traditional cement, respectively) but also exhibits excellent ionic conductivity (27.8 mS·cm-1), overwhelming most previously reported cement-based and hydrogel-based electrolytes. As a proof-of-concept demonstration, we assemble the l-CPSSE electrolytes with cement-based electrodes to achieve all-cement-based solid-state energy storage devices, delivering an outstanding full-cell specific capacity of 72.2 mF·cm-2. More importantly, a 5 × 5 cm2 sized building model is successfully fabricated and operated by connecting 4 l-CPSSE-based full cells in series, showcasing its great potential in self-energy-storage buildings. This work provides a general methodology for preparing revolutionary cement-based electrolytes and may pave the way for achieving zero-carbon buildings.

2.
Angew Chem Int Ed Engl ; 62(50): e202314273, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-37885123

The development of flexible, room-temperature phosphorescence (RTP) materials remains challenging owing to the quenching of their unstable triplet excitons via molecular motion. Therefore, a polymer matrix with Tg higher than room temperature is required to prevent polymer segment movement. In this study, a RTP material was developed by incorporating a 4-biphenylboronic acid (BPBA) phosphor into a poly(vinylidene fluoride) (PVDF) matrix (Tg =-27.1 °C), which exhibits a remarkable UV-light-dependent oxygen consumption phosphorescence with a lifetime of 1275.7 ms. The adjustable RTP performance is influenced by the crystallinity and polymorph (α, ß, and γ phases) fraction of PVDF, therefore, the low Tg of the PVDF matrix enables the polymeric segmental motion upon microwave irradiation. Consequently, a reduction in the crystallinity and an increase in the α phase fraction in PVDF film induces RTP after 2.45 GHz microwave irradiation. These findings open up new avenues for constructing crystalline and phase-dependent RTP materials while demonstrating a promising approach toward microwave detection.

3.
Front Genet ; 11: 562971, 2020.
Article En | MEDLINE | ID: mdl-33173536

Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders characterized by genetic and environmental risk factors. The pathogenesis of ASD has a strong genetic basis, consisting of rare de novo or inherited variants among a variety of multiple molecules. Previous studies have shown that microRNAs (miRNAs) are involved in neurogenesis and brain development and are closely associated with the pathogenesis of ASD. However, the regulatory mechanisms of miRNAs in ASD are largely unclear. In this work, we present a stepwise method, ASDmiR, for the identification of underlying pathogenic genes, networks, and modules associated with ASD. First, we conduct a comparison study on 12 miRNA target prediction methods by using the matched miRNA, lncRNA, and mRNA expression data in ASD. In terms of the number of experimentally confirmed miRNA-target interactions predicted by each method, we choose the best method for identifying miRNA-target regulatory network. Based on the miRNA-target interaction network identified by the best method, we further infer miRNA-target regulatory bicliques or modules. In addition, by integrating high-confidence miRNA-target interactions and gene expression data, we identify three types of networks, including lncRNA-lncRNA, lncRNA-mRNA, and mRNA-mRNA related miRNA sponge interaction networks. To reveal the community of miRNA sponges, we further infer miRNA sponge modules from the identified miRNA sponge interaction network. Functional analysis results show that the identified hub genes, as well as miRNA-associated networks and modules, are closely linked with ASD. ASDmiR is freely available at https://github.com/chenchenxiong/ASDmiR.

...