Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 16635, 2024 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025906

RESUMEN

The small Extracellular vesicles (sEV) has been recognized to be significant for intercellular communication due to their ability to transfer important cellular cargoes like miRNAs through circulation. The pituitary gland has not been clearly known about the role of its secreted sEV under normal physiological conditions. And Liver disease is a global public health burden. The present study is the first to investigate the effect of pituitary sEV on the liver. Sequencing and qRT-PCR revealed miR-143-3p is one of the richest in the pituitary sEV. MiR-143 Knockout (KO) mice resulted in a remarkable decrease in insulin-like growth factor 1 (IGF-1) levels and a significant increase in insulin-like growth factor binding protein 5 (IGFBP5) levels along with a reduction in liver primary cell growth. More importantly, compared with miR-143-KO-sEV, WT-sEV possesses a more robust capacity to improve miR-143 KO mice liver repair through the Wnt/ß-catenin pathway after an acute injury caused by carbon tetrachloride (CCl4). Our results indicate that pituitary-derived sEV promotes hepatocyte proliferation and liver repair by its cargo miR-143-3p and provides new insight into the regulation mechanism of the pituitary-liver axis, and open a new window for endocrine regulation by using sEV.


Asunto(s)
Vesículas Extracelulares , Hígado , Ratones Noqueados , MicroARNs , Hipófisis , Animales , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Hipófisis/metabolismo , Ratones , Hígado/metabolismo , Proliferación Celular , Hepatocitos/metabolismo , Vía de Señalización Wnt , Masculino , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Regeneración Hepática/genética , Tetracloruro de Carbono/toxicidad
2.
Chin J Integr Med ; 28(2): 116-123, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34874518

RESUMEN

OBJECTIVE: To investigate the protective effects and underlying mechanisms of Xuebijing Injection (XBJ) on the lung endothelial barrier in hydrogen sulfide (H2S)-induced acute respiratory distress syndrome (ARDS). METHODS: Sprague-Dawley rats were exposed to H2S (300 ppm) to establish ARDS model, while human pulmonary microvascular endothelial cells (HPMECs) were incubated with NaHS (a H2S donor, 500 µmol/L) to establish cell model. H2S and XBJ were concurrently administered to the rat and cell models. Lung hematoxylin and eosin staining, immunohistochemistry, transmission electron microscopy and wet/dry ratio measurement were used to confirm ARDS induced by H2S in vivo. The expression levels of claudin-5, phosphorylated protein kinase B (p-AKT)/t-AKT and p-forkhead box transcription factor O1 (FoxO1)/t-FoxO1 in vivo and in vitro were also assessed. Paracellular permeability and transepithelial electrical resistance (TEER) were measured to evaluate endothelial barrier function in the cell model. RESULTS: The morphological investigation showed that XBJ attenuated H2S-induced ARDS in rats. XBJ significantly ameliorated both the reduction in TEER and the increased paracellular permeability observed in NaHS-treated HPMECs (P<0.05). The protective effects of XBJ were blocked by LY294002, a phosphatidylinositol 3-kinase (PI3K)/AKT/FoxO1 pathway antagonist (P<0.05). Furthermore, XBJ promoted the expression of claudin-5 and increased the levels of p-AKT and p-FoxO1 in vivo and in vitro (P<0.05). CONCLUSIONS: XBJ ameliorated H2S-induced ARDS by promoting claudin-5 expression via the PI3K/AKT/FoxO1 signaling pathway.


Asunto(s)
Sulfuro de Hidrógeno , Síndrome de Dificultad Respiratoria , Animales , Claudina-5 , Medicamentos Herbarios Chinos , Células Endoteliales , Fosfatidilinositol 3-Quinasas , Ratas , Ratas Sprague-Dawley , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
3.
Int J Mol Sci ; 19(3)2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29522441

RESUMEN

Adipose tissue plays an important role in energy metabolism. Adipose dysfunction is closely related to obesity and type II diabetes. Glucose uptake is the key step for fat synthesis in adipocyte. miRNAs have been proven to play a crucial role in adipocyte differentiation, adipogenesis and glucose homeostasis. In this paper, we firstly reported that miR-146b decreased glucose consumption by up-regulating miR-146b in a porcine primary adipocyte model, while the inhibitor of endogenous miR-146b rescued the reduction. Then, miR-146b was predicated to target IRS1 by bioinformatics analysis, and a dual-luciferase reporter assay validated this predication. Western blot analyses indicated both IRS1 and glucose transporter type 4 (GLUT4) were down-regulated by miR-146b overexpression. Our study demonstrated that miR-146b regulated glucose homeostasis in porcine primary pre-adipocyte by targeting IRS1, and provided new understandings on regulations of lipogenesis by miRNAs.


Asunto(s)
Adipocitos/metabolismo , Glucosa/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , MicroARNs/metabolismo , Porcinos/metabolismo , Adipogénesis/genética , Tejido Adiposo , Animales , Secuencia de Bases , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Lipogénesis/genética , Cultivo Primario de Células , Porcinos/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA