Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Curr Biol ; 31(22): 4887-4897.e5, 2021 11 22.
Article En | MEDLINE | ID: mdl-34551283

Large mammalian carnivores have undergone catastrophic declines during the Anthropocene across the world. Despite their pivotal roles as apex predators in food webs and ecosystem dynamics, few detailed dietary datasets of large carnivores exist, prohibiting deep understanding of their coexistence and persistence in human-dominated landscapes. Here, we present fine-scaled, quantitative trophic interactions among sympatric carnivores from three assemblages in the Mountains of Southwest China, a global biodiversity hotspot harboring the world's richest large-carnivore diversity, derived from DNA metabarcoding of 1,097 fecal samples. These assemblages comprise a large-carnivore guild ranging from zero to five species along with two mesocarnivore species. We constructed predator-prey food webs for each assemblage and identified 95 vertebrate prey taxa and 260 feeding interactions in sum. Each carnivore species consumed 6-39 prey taxa, and dietary diversity decreased with increased carnivore body mass across guilds. Dietary partitioning was more evident between large-carnivore and mesocarnivore guilds, yet different large carnivores showed divergent proportional utilization of different-sized prey correlating with their own body masses. Large carnivores particularly selected livestock in Tibetan-dominated regions, where the indigenous people show high tolerance toward wild predators. Our results suggest that dietary niche partitioning and livestock subsidies facilitate large-carnivore sympatry and persistence and have key implications for sustainable conservation promoting human-carnivore coexistence.


Carnivora , Livestock , Animals , Biodiversity , Ecosystem , Food Chain , Humans , Predatory Behavior
2.
Sci Rep ; 7: 41909, 2017 02 14.
Article En | MEDLINE | ID: mdl-28195150

Dietary information is lacking in most of small to mid-sized carnivores due to their elusive predatory behaviour and versatile feeding habits. The leopard cat (LPC; Prionailurus bengalensis) and the Asiatic golden cat (AGC; Catopuma temminckii) are two important yet increasingly endangered carnivore species in the temperate mountain forest ecosystem in Southwest China, a global biodiversity hotspot and a significant reservoir of China's endemic species. We investigated the vertebrate prey of the two sympatric felids using faecal DNA and a next-generation sequencing (NGS)/metabarcoding approach. Forty vertebrate prey taxa were identified from 93 LPC and 10 AGC faecal samples; 37 taxa were found in the LPC diet, and 20 were detected in the AGC diet. Prey included 27 mammalian taxa, 11 birds, one lizard and one fish, with 73% (29/40) of the taxa assigned to the species level. Rodents and pikas were the most dominant LPC prey categories, whereas rodents, pheasant, fowl and ungulates were the main AGC prey. We also analysed the seasonal and altitudinal variations in the LPC diet. Our results provide the most comprehensive dietary data for these felids and valuable information for their conservation planning.


Biodiversity , Diet , Endangered Species , Felidae/physiology , Altitude , Animals , China , Feces/chemistry , Predatory Behavior , Seasons
...