Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38004881

RESUMEN

Semiconductor chips on a substrate have a wide range of applications in electronic devices. However, environmental temperature changes may cause mechanical buckling of the chips, resulting in an urgent demand to develop analytical models to study this issue with high efficiency and accuracy such that safety designs can be sought. In this paper, the thermal buckling of chips on a substrate is considered as that of plates on a Winkler elastic foundation and is studied by the symplectic superposition method (SSM) within the symplectic space-based Hamiltonian system. The solution procedure starts by converting the original problem into two subproblems, which are solved by using the separation of variables and the symplectic eigenvector expansion. Through the equivalence between the original problem and the superposition of subproblems, the final analytical thermal buckling solutions are obtained. The SSM does not require any assumptions of solution forms, which is a distinctive advantage compared with traditional analytical methods. Comprehensive numerical results by the SSM for both buckling temperatures and mode shapes are presented and are well validated through comparison with those using the finite element method. With the solutions obtained, the effects of the moduli of elastic foundations and geometric parameters on critical buckling temperatures and buckling mode shapes are investigated.

2.
Micromachines (Basel) ; 13(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36295980

RESUMEN

In a flexible electronic heater (FEH), periodic metal wires are often encapsulated into the soft elastic substrate as heat sources. It is of great significance to develop analytic models on transient heat conduction of such an FEH in order to provide a rapid analysis and preliminary designs based on a rapid parameter analysis. In this study, an analytic model of transient heat conduction for bi-layered FEHs is proposed, which is solved by a novel symplectic superposition method (SSM). In the Laplace transform domain, the Hamiltonian system-based governing equation for transient heat conduction is introduced, and the mathematical techniques incorporating the separation of variables and symplectic eigen expansion are manipulated to yield the temperature solutions of two subproblems, which is followed by superposition for the temperature solution of the general problem. The Laplace inversion gives the eventual temperature solution in the time domain. Comprehensive time-dependent temperatures by the SSM are presented in tables and figures for benchmark use, which agree well with their counterparts by the finite element method. A parameter analysis on the influence of the thermal conductivity ratio is also studied. The exceptional merit of the SSM is on a direct rigorous derivation without any assumption/predetermination of solution forms, and thus, the method may be extended to more heat conduction problems of FEHs with more complex structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...