Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Total Environ ; 934: 173283, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38759927

Conventional concentration-oriented approaches for nitrate risk diagnosis only provide overall risk levels without identifying risk values of individual sources or sources accountable for potential health risks. Therefore, a hybrid model combining the end-member mixing model tool on Excel™ (EMMTE) with human health risk assessment (HHRA) was developed to assess the source-oriented health risks for groundwater nitrate, particularly in the Poyang Lake Plain (PLP) region. The results indicated that the EMMTE and the Bayesian stable isotope mixing model (MixSIAR) exhibited remarkable consistency in source apportionment of groundwater nitrate. The source contribution of groundwater nitrate in PLP was related to land use types, hydrogeological conditions, and soil properties. Notably, manure and sewage sources, contributing up to 53.4 %, represented the largest nitrate pollution sources, with a significant contribution of soil nitrogen and nitrogen fertilizers. The non-carcinogenic risk for four potential sources was below the acceptable threshold of 1. Given the factors including rainfall dilution and economic development, attention should be directed towards mitigating the health risks posed by manure and sewage. This study can verify the efficacy of EMMTE in source apportionment and offer valuable insights for decision-makers to regulate the largest sources of nitrate contamination and enhance groundwater management efficiency.


Environmental Monitoring , Groundwater , Nitrates , Water Pollutants, Chemical , Groundwater/chemistry , Nitrates/analysis , Water Pollutants, Chemical/analysis , Risk Assessment , Environmental Monitoring/methods , Humans , Bayes Theorem , China
2.
Environ Sci Technol ; 58(18): 8032-8042, 2024 May 07.
Article En | MEDLINE | ID: mdl-38670935

Accumulation of geogenic phosphorus (P) in groundwater is an emerging environmental concern, which is closely linked to coupled processes involving FeOOH and organic matter under methanogenic conditions. However, it remains unclear how P enrichment is associated with methane cycling, particularly the anaerobic methane oxidation (AMO). This study conducted a comprehensive investigation of carbon isotopes in dissolved inorganic carbon (DIC), CO2, and CH4, alongside Fe isotopes, microbial communities, and functions in quaternary aquifers of the central Yangtze River plain. The study found that P concentrations tended to increase with Fe(II) concentrations, δ56Fe, and δ13C-DIC, suggesting P accumulation due to the reductive dissolution of FeOOH under methanogenic conditions. The positive correlations of pmoA gene abundance versus δ13C-CH4 and Fe concentrations versus δ13C-CH4, and the prevalent presence of Candidatus_Methanoperedens, jointly demonstrated the potential significance of Fe(III)-mediated AMO process (Fe-AMO) alongside traditional methanogenesis. The increase of P concentration with δ13C-CH4 value, pmoA gene abundance, and Fe concentration suggested that the Fe-AMO process facilitated P enrichment in groundwater. Redundancy analysis confirmed this assertion, identifying P concentration as the primary determinant and the cooperative influence of Fe-AMO microorganisms such as Candidatus_Methanoperedens and Geobacter on P enrichment. Our work provided new insights into P dynamics in subsurface environments.


Groundwater , Methane , Oxidation-Reduction , Phosphorus , Groundwater/chemistry , Methane/metabolism , Phosphorus/metabolism , Anaerobiosis , Ferric Compounds/metabolism
3.
Water Res ; 250: 121025, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38113593

Elevated concentration levels of geogenic ammonium in groundwater arise from the mineralization of nitrogen-containing natural organic matter in various geological settings worldwide, especially in alluvial-lacustrine and coastal environments. However, the difference in enrichment mechanisms of geogenic ammonium between these two types of aquifers remains poorly understood. To address this knowledge gap, we investigated two representative aquifer systems in central Yangtze (Dongting Lake Plain, DTP) and southern China (Pearl River Delta, PRD) with contrasting geogenic ammonium contents. The use of optical and molecular characterization of DOM combined with hydrochemistry and stable carbon isotopes has revealed differences in DOM between the two types of aquifer systems and revealed contrasting controls of DOM on ammonium enrichment. The results indicated higher humification and degradation of DOM in DTP groundwater, characterized by abundant highly unsaturated compounds. The degradation of DOM and nitrogen-containing DOM was dominated by highly unsaturated compounds and CHO+N molecular formulas in highly unsaturated compounds, respectively. In contrast, the DOM in PRD groundwater was more biogenic, less degraded, and contained more aliphatic compounds in addition to highly unsaturated compounds. The degradation of DOM and nitrogen-containing DOM was dominated by aliphatic compounds and polyphenols and CHO+N molecular formulas in highly unsaturated compounds and polyphenols, respectively. As DOM degraded, the ammonium production efficiency of DOM decreased, contributing to lower ammonium concentrations in DTP groundwater. In addition, the CHO+N(SP) molecular formulas were mainly of microbial-derived and gradually accumulated with DOM degradation. In this study, we conducted the first comprehensive investigation into the patterns of groundwater ammonium enrichment based on DOM differences in various geological settings.


Ammonium Compounds , Groundwater , Dissolved Organic Matter , Groundwater/chemistry , Rivers/chemistry , Nitrogen
4.
Water Res ; 222: 118867, 2022 Aug 15.
Article En | MEDLINE | ID: mdl-35870391

Groundwater nitrogen contamination is becoming increasingly serious worldwide, and natural nitrogen attenuation processes such as anaerobic ammonium oxidation coupled to iron reduction ("Feammox") play an important role in mitigating contamination. Although there has been intensive study of Feammox in soils and sediments, still lacks research on this process in groundwater. This study makes effort to demonstrate the occurrence of Feammox in groundwater by combining information from Fe/N isotope composition, the quantitative polymerase chain reaction (qPCR) assay, and 16S rRNA gene sequencing. Poyang Lake Plain of Yangtze River in central China was selected as the case study area. The critical evidences that indicate Feammox in groundwater include favorable hydrogeochemical conditions of the alluvia-lacustrine aquifer systems, the simultaneous enrichment of 15N in ammonium and 56Fe, the relative high abundance of Acidimicrobiaceae bacterium A6, and the joint elevation of the abundance of the Feammox bacteria and the concentration of Fe(III). Redundancy analysis (RDA) indicated that Geothrix and Rhodobacter may participate directly or cooperatively in the Feammox process. Ammonium-oxidizing archaea (AOA) involved in ammonium-oxidizing or Feammox process may be stimulated by Fe(III) under a low oxygen concentration and weakly acidic condition. Anammox may be indirectly enhanced by products of the nitrogen transformation processes involving Feammox bacteria and AOA. Fe(III) concentration is an important environmental factor affecting the abundance of functional microorganisms related to nitrogen cycling and the composition of ammonium-oxidizing and iron-reducing microbes. Specific geological background (such as the widespread red soils) and anthropogenic input of ammonium, iron, and acidic substances may jointly promote Feammox in groundwater.


Ammonium Compounds , Groundwater , Ammonium Compounds/chemistry , Bacteria/genetics , Iron/chemistry , Nitrogen/analysis , Oxidation-Reduction , RNA, Ribosomal, 16S , Soil/chemistry
5.
Environ Pollut ; 290: 118119, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34523528

Although groundwater nitrogen pollution has been widely studied, the control of hydrogeological conditions on behavior of nitrogen compounds has been poorly understood. In this study, multiple stable isotopes (N/C/H/O), spectral characteristics of DOM coupled with water chemistry were used to reveal the sources and fate of nitrate and ammonium in three subareas with different hydrogeological conditions in the Central Yangtze River Basin. We identified three contrasting patterns of nitrogen sources and fate in groundwater controlled by different aquifer features. In a reducing porous aquifer mainly composed of carbonate minerals overlain by a thick low-permeability layer, the NH4-N concentration is high (mean 4.12 mg/L) but with quite low NO3-N concentration (mean 0.28 mg/L). The high ammonium is mainly from intense degradation of organic matter (OM), while denitrification at a higher rate results in nitrate removal. Feammox may be favored owing to abundant humics acting as the electron shuttle. In a weakly reducing to oxidizing porous aquifer mainly composed of aluminosilicate minerals overlain by a varying thickness of low-permeability layer, high ammonium occurs in a weakly reducing condition and is affected by both anthropogenic input and OM degradation, while high nitrate occurs in a more oxidizing condition and could be mainly from soil nitrogen, manure or sewage. Feammox may be also favored due to more acidic environment formed by weathering of aluminosilicate minerals, fluctuating redox condition and low abundance of labile organic carbon, while denitrification occurs at a slower rate coupled with concurrent re-oxidation of nitrite to nitrate. In an oxidizing porous - fissured aquifer system overlain by a thin low-permeability layer, the concentrations of ammonium and nitrate are both low, possibly due to strong hydrodynamic and flushing condition, although slightly higher concentration of nitrate exhibit similar sources and fate with the weakly reducing to oxidizing porous aquifer mentioned above.


Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Nitrates/analysis , Nitrogen/analysis , Nitrogen Compounds , Nitrogen Isotopes/analysis , Rivers , Water Pollutants, Chemical/analysis
...