Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Biosens Bioelectron ; 261: 116458, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38852321

RESUMEN

Herein, a colorimetric-fluorescent hybrid bifunctional nanobead with Janus structure (J-cf-HBN) was synthesized via one-pot microemulsification. Oleylamine-coated AuNPs and aggregation-induced emission luminogens (AIEgens) were suggested as building blocks to obtain high-performance colorimetric-fluorescent signals. The as-prepared J-cf-HBNs were used as a signal amplification probe to construct an immunochromatographic assay (J-cf-HBNs-ICA) platform for the ultrasensitive detection of staphylococcal enterotoxin B (SEB) in milk samples. Owing to the rational spatial distribution of AuNPs and AIEgens, the J-cf-HBNs present a highly retained photoluminescence and enhanced colorimetric signals. Combined with a pair of highly affinitive anti-SEB antibodies, the J-cf-HBN-ICA platform enabled the fast naked-eye visualization and fluorescent quantitative detection of SEB in various milk matrices. Given the advantages of the dual-mode high-performance J-cf-HBNs, the proposed strip achieved a high sensitivity for SEB qualitative determination with a visual limit of detection (LOD) of 1.56 ng mL-1 and exhibited ultrasensitivity for SEB quantitative detection with a LOD of 0.09 ng mL-1, which is 139-fold lower than that of ELISA using same antibodies. In conclusion, this work provides new insights into the construction of multimode immunochromatographic methods for food safety detection in the field.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Enterotoxinas , Oro , Límite de Detección , Nanopartículas del Metal , Leche , Leche/química , Enterotoxinas/análisis , Enterotoxinas/inmunología , Enterotoxinas/aislamiento & purificación , Animales , Técnicas Biosensibles/métodos , Colorimetría/métodos , Oro/química , Nanopartículas del Metal/química , Colorantes Fluorescentes/química , Contaminación de Alimentos/análisis , Cromatografía de Afinidad/métodos , Inmunoensayo/métodos
2.
Food Chem ; 450: 139260, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626714

RESUMEN

High fluorescence intensity microspheres such as aggregation-induced emission fluorescence microspheres (AIEFM) have improved the sensitivity of lateral flow immunoassay (LFIA). The preparation of immune probes in LFIA usually adopts the chemical coupling strategy with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide for antibody coupling, which has the problems of low coupling efficiency, tedious coupling process, and poor repeatability. A biocompatible metal-phenolic network (MPN), which contains large amounts of phenols and galloyl groups, could easily, quickly, and stably couple with antibodies. Herein, we proposed a strategy based on MPN modification on ultrabright AIEFM surface as a novel label for the rapid detection of carbendazim. The limit of detection of AIEFM@MPN-LFIA was 0.019 ng/mL, which was 4.9 times lower than that of AIEFM-LFIA. In spiked samples, the average recoveries of AIEFM@MPN-LFIA ranged from 80% to 118% (coefficient of variation <13.45%). Therefore, AIEFM@MPN was a promising signal label that could improve the detection performance of LFIA.


Asunto(s)
Bencimidazoles , Carbamatos , Microesferas , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Bencimidazoles/química , Bencimidazoles/análisis , Carbamatos/análisis , Carbamatos/química , Fenoles/análisis , Fenoles/química , Límite de Detección , Contaminación de Alimentos/análisis , Fluorescencia , Metales/química , Colorantes Fluorescentes/química , Materiales Biocompatibles/química
3.
Food Chem ; 450: 139380, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640535

RESUMEN

Pyrimethanil (PYR) is a fungicide that is harmful to consumers when present in foods at concentrations greater than maximum permitted residue levels. High-performance immunoprobes and dual-readout strategy may be useful for constructing sensitive lateral flow immunoassay (LFIA). Herein, the prepared litchi-like Au-Ag bimetallic nanospheres (LBNPs) exhibited high mass extinction coefficients and fluorescence quenching constants. Benefiting from LBNPs and dual-readout mode, the limits of detection of LBNPs-CM-LFIA and LBNPs-FQ-LFIA for PYR were 0.957 and 0.713 ng mL-1, which were 2.54- and 3.41-fold lower than that of gold nanoparticles-based LFIA, respectively. The limits of quantitation of LBNPs-CM-LFIA and LBNPs-FQ-LFIA were 3.740 and 1.672 ng mL-1, respectively. LBNPs-LFIA was applied to detect PYR in cucumber and grape samples with satisfactory recovery (90%-111%). LBNPs-LFIA showed good agreement with LC-MS/MS for the detection of PYR in the samples. Accordingly, this sensitive and accurate dual-readout LFIA based on LBNPs can be effectively applied for food safety.


Asunto(s)
Contaminación de Alimentos , Fungicidas Industriales , Oro , Nanopartículas del Metal , Nanosferas , Pirimidinas , Plata , Vitis , Plata/química , Oro/química , Nanosferas/química , Pirimidinas/química , Pirimidinas/análisis , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Contaminación de Alimentos/análisis , Fungicidas Industriales/análisis , Fungicidas Industriales/química , Vitis/química , Nanopartículas del Metal/química , Litchi/química , Cucumis sativus/química , Límite de Detección
4.
Adv Mater ; 36(27): e2313381, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38647215

RESUMEN

Aggregation-induced emission luminogen (AIEgen)-functionalized organic-inorganic hybrid nanoparticles (OINPs) are an emerging category of multifunctional nanomaterials with vast potential applications. The spatial arrangement and positioning of AIEgens and inorganic compounds in AIEgen-functionalized OINPs determine the structures, properties, and functionalities of the self-assembled nanomaterials. In this work, a facile and general emulsion self-assembly tactic for synthesizing well-defined AIEgen-functionalized OINPs is proposed by coassembling alkane chain-functionalized inorganic nanoparticles with hydrophobic organic AIEgens. As a proof of concept, the self-assembly and structural evolution of plasmonic-fluorescent hybrid nanoparticles (PFNPs) from concentric circle to core shell and then to Janus structures is demonstrated by using alkane chain-modified AuNPs and AIEgens as building blocks. The spatial position of AuNPs in the signal nanocomposite is controlled by varying the alkane ligand length and density on the AuNP surface. The mechanism behind the formation of various PFNP nanostructures is also elucidated through experiments and theoretical simulation. The obtained PFNPs with diverse structures exhibit spatially tunable optical and photothermal properties for advanced applications in multicolor and multimode immunolabeling and photothermal sterilization. This work presents an innovative synthetic approach of constructing AIEgen-functionalized OINPs with diverse structures, compositions, and functionalities, thereby championing the progressive development of these OINPs.

5.
Food Chem ; 447: 138997, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38513493

RESUMEN

Herein we developed a multicolor lateral flow immunoassay (LFIA) test strip for rapid and simultaneous quantitative detection of aflatoxin B1 (AFB1) and zearalenone (ZEN). Three differently colored aggregation-induced emission nanoparticles (AIENPs) were designed as LFIA signal tags, with red and green AIENPs for targeting AFB1 and ZEN at the test line, and yellow AIENPs for indicating the validity of the test strip at the control (C) line. After surface functionalization with antibodies, the developed AIENP-based multicolor LFIA allows simultaneous and accurate quantification of AFB1 and ZEN using an independent C-line assisted ratiometric signal output strategy. The detection limits of AFB1 and ZEN were 6.12 and 26 pg/mL, respectively. The potential of this method for real-world applications was well demonstrated in corn and wheat. Overall, this multicolor LFIA shows great potential for field screening of multiple mycotoxins and can be extended to rapid and simultaneous monitoring of other small molecule targets.


Asunto(s)
Nanopartículas del Metal , Micotoxinas , Zearalenona , Zearalenona/análisis , Aflatoxina B1/análisis , Anticuerpos Monoclonales , Micotoxinas/análisis , Inmunoensayo/métodos , Límite de Detección , Contaminación de Alimentos/análisis
6.
J Agric Food Chem ; 72(11): 5966-5974, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38446589

RESUMEN

Mycotoxin contamination is an important issue for food safety and the environment. Removing mycotoxins from food without losing nutrients and flavor components remains a challenge. In this study, a novel strategy was proposed for the targeted removal of aflatoxin B1 (AFB1) from peanut oil using an amphipathic enzyme-metal hybrid nanoreactor (PL-GOx-Fe3O4@COF) constructed with covalent organic frameworks (COFs) which can selectively adsorb AFB1. Due to the confined space provided by COFs and the proximity effect between GOx and Fe3O4, the detoxification of AFB1 is limited in the nanoreactor without affecting the composition and properties of the oil. The detoxification efficiency of AFB1 in the chemoenzymatic cascade reaction catalyzed by PL-GOx-Fe3O4@COF is six times higher than that of the combination of free GOx and Fe3O4. The AFB1 transformation product has nontoxicity to kidney and liver cells. This study provides a powerful tool for the targeted removal of mycotoxins from edible oils.


Asunto(s)
Aflatoxina B1 , Inocuidad de los Alimentos , Aflatoxina B1/toxicidad , Hepatocitos , Aceite de Cacahuete , Nanotecnología
8.
J Agric Food Chem ; 72(1): 857-864, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38134022

RESUMEN

Salmonellosis continues to impose a significant economic burden globally. Rapid and sensitive detection of Salmonella is crucial to preventing the outbreaks of foodborne illnesses, yet it remains a formidable challenge. Herein, a dual-functional tetrahedron multivalent aptamer assisted amplification-free CRISPR/Cas12a assay was developed for Salmonella detection. In the system, the aptamer was programmatically assembled on the tetrahedral DNA nanostructure to fabricate a multivalent aptamer (TDN-multiApt), which displayed a 3.5-fold enhanced avidity over the monovalent aptamer and possessed four CRISPR/Cas12a targeting fragments to amplify signal. Therefore, TDN-multiApt could directly activate Cas12a to achieve the second signal amplification without any nucleic acid amplification. By virtue of the synergism of high avidity and cascaded signal amplifications, the proposed method allowed the ultrasensitive detection of Salmonella as low as 7 cfu mL-1. Meanwhile, this novel platform also exhibited excellent specificity against target bacteria and performed well in the detection of various samples, indicating its potential application in real samples.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Humanos , Salmonella/genética , Oligonucleótidos , Bioensayo , Brotes de Enfermedades , Técnicas de Amplificación de Ácido Nucleico
9.
ACS Nano ; 17(18): 18596-18607, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37698300

RESUMEN

The demand for the ultrasensitive and rapid quantitative analysis of trace target analytes has become increasingly urgent. However, the sensitivity of traditional immunoassay-based detection methods is limited due to the contradiction between molecular recognition and signal amplification caused by the size effect of nanoprobes. To address this dilemma, we describe versatile M13 phage-assisted immunorecognition and signal transduction spatiotemporal separation that enable ultrasensitive light-scattering immunoassay systems for the quantitative detection of low-abundance target analytes. The newly developed immunoassay strategy combines the M13 phage-assisted light scattering signal fluctuations of gold nanoparticles (AuNPs) with gold in situ growth (GISG) technology. Given the synergy of M13 phage-mediated leverage effect and GISG-amplified light scattering signal modulation, the practical detection capability of this strategy can achieve the ultrasensitive and rapid quantification of ochratoxin A and alpha-fetoprotein in real samples at the subfemtomolar level within 50 min, displaying about 4 orders of magnitude enhancement in sensitivity compared with traditional phage-based ELISA. To further improve the sensitivity of our immunoassay, the biotin-streptavidin amplification scheme is implemented to detect severe acute respiratory syndrome coronavirus 2 spike protein down to the attomolar range. Overall, this study offers a direction for ultrasensitive quantitative detection of target analytes by the synergistic combination of M13 phage-mediated leverage effect and GISG-amplified light scattering signal modulation.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Humanos , Bacteriófago M13 , Oro , Inmunoensayo
10.
Analyst ; 148(17): 4084-4090, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37486303

RESUMEN

Traditional immunoassays exhibit insufficient screening sensitivity for foodborne pathogens due to their low colorimetric signal intensities. Herein, we propose an ultrasensitive dynamic light scattering (DLS) immunosensor for Salmonella based on a "cargo release-seed growth" strategy enabled by a probe, namely gold nanoparticle-decorated covalent organic frameworks (COF@AuNP). Large amounts of AuNPs in COF@AuNP can be released by acid treatment-induced decomposition of the imine-linked COF, and then they are enlarged via gold growth to generate a dramatically enhanced light-scattering signal, leading to a vast improvement in detection sensitivity. Based on an immunomagnetic microbead carrier, the proposed DLS immunosensor is capable of detecting trace Salmonella in milk in the range of 2.0 × 102-2.0 × 105 CFU mL-1, with a limit of detection of 60 CFU mL-1. The immunosensor also demonstrated excellent selectivity, good accuracy and precision, and high reliability for detecting Salmonella in milk.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Estructuras Metalorgánicas , Animales , Oro , Leche , Reproducibilidad de los Resultados , Inmunoensayo , Salmonella , Límite de Detección
11.
Biosensors (Basel) ; 13(4)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185496

RESUMEN

Hg2+ contamination in sewage can accumulate in the human body through the food chains and cause health problems. Herein, a novel aggregation-induced emission luminogen (AIEgen)-encapsulated hydrogel probe for ultrasensitive detection of Hg2+ was developed by integrating hydrophobic AIEgens into hydrophilic hydrogels. The working mechanism of the multi-fluorophore AIEgens (TPE-RB) is based on the dark through-bond energy transfer strategy, by which the energy of the dark tetraphenylethene (TPE) derivative is completely transferred to the rhodamine-B derivative (RB), thus resulting in intense photoluminescent intensity. The spatial networks of the supporting hydrogels further provide fixing sites for the hydrophobic AIEgens to enlarge accessible reaction surface for hydrosoluble Hg2+, as well create a confined reaction space to facilitate the interaction between the AIEgens and the Hg2+. In addition, the abundant hydrogen bonds of hydrogels further promote the Hg2+ adsorption, which significantly improves the sensitivity. The integrated TPE-RB-encapsulated hydrogels (TR hydrogels) present excellent specificity, accuracy and precision in Hg2+ detection in real-world water samples, with a 4-fold higher sensitivity compared to that of pure AIEgen probes. The as-developed TR hydrogel-based chemosensor holds promising potential as a robust, fast and effective bifunctional platform for the sensitive detection of Hg2+.


Asunto(s)
Mercurio , Humanos , Hidrogeles , Colorantes Fluorescentes/química , Iones , Adsorción
12.
J Agric Food Chem ; 71(10): 4408-4416, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36866978

RESUMEN

Highly luminescent nanospheres have been demonstrated in enhancing the sensitivity of lateral flow immunoassay (LFIA) due to their loading numerous luminescent dyes. However, the photoluminescence intensities of existing luminescent nanospheres are limited due to the aggregation-caused quenching effect. Herein, highly luminescent aggregation-induced emission luminogens embedded nanospheres (AIENPs) with red emission were introduced as signal amplification probes of LFIA for quantitative detection of zearalenone (ZEN). Optical properties of red-emitted AIENPs were compared with time-resolved dye-embedded nanoparticles (TRNPs). Results showed that red-emitted AIENPs have stronger photoluminescence intensity on the nitrocellulose membrane and superior environmental tolerance. Additionally, we benchmarked the performance of AIENP-LFIA against TRNP-LFIA using the same set of antibodies, materials, and strip readers. Results showed that AIENP-LFIA exhibits good dynamic linearity with the ZEN concentration from 0.195 to 6.25 ng/mL, with half competitive inhibitory concentration (IC50) and detection of limit (LOD) at 0.78 and 0.11 ng/mL, respectively. The IC50 and LOD are 2.07- and 2.36-fold lower than those of TRNP-LFIA. Encouragingly, the precision, accuracy, specificity, practicality, and reliability of this AIENP-LFIA for ZEN quantitation were further characterized. The results verified that the AIENP-LFIA has good practicability for the rapid, sensitive, specific, and accurate quantitative detection of ZEN in corn samples.


Asunto(s)
Nanopartículas del Metal , Nanosferas , Zearalenona , Zearalenona/análisis , Luminiscencia , Contaminación de Alimentos/análisis , Reproducibilidad de los Resultados , Inmunoensayo/métodos , Límite de Detección , Nanopartículas del Metal/química
13.
Food Chem ; 412: 135580, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36736185

RESUMEN

Herein, we report a novel aggregation-induced emission nanoparticles (AIENPs)-based immunochromatography assay (ICA) platform to detect ochratoxin A (OTA) using orange-yellow-emitting AIENPs as fluorescent nanoprobes. Immunochromatographic strip is used for the quantitative detection of OTA in crop matrix using AIENPs coupled with anti-OTA ascites. Under optimal conditions, AIENPs-ICA exhibits stronger signal output capacity and higher sensitivity than traditional gold nanoparticles-based ICA. The half-maximal inhibitory concentration is as low as 0.149 ng mL-1, and the limit detection is 0.042 ng mL-1 at 10 % competitive inhibition concentration. The average recovery of AIENPs-ICA ranges from 82.60 % to 113.14 % with the coefficient of variation ranging from 1.26 % to 11.57 %, proving the proposed method possesses good reliability and reproducibility. Moreover, the developed AIENPs-ICA exhibits negligible cross-reactions with other mycotoxins. We believe the presented AIENPs-ICA platform holds promising potential as a powerful tool for on-site detection of OTA and other molecules detection in food samples.


Asunto(s)
Nanopartículas del Metal , Ocratoxinas , Oro/química , Zea mays/química , Reproducibilidad de los Resultados , Cromatografía de Afinidad/métodos , Límite de Detección , Nanopartículas del Metal/química , Ocratoxinas/análisis
14.
Toxins (Basel) ; 15(2)2023 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-36828428

RESUMEN

Staphylococcal enterotoxin A (SEA) has presented enormous difficulties in dairy food safety and the sensitive detection of SEA provides opportunities for effective food safety controls and staphylococcal food poisoning tracebacks. Herein, a novel aggregation-induced emission (AIE)-based sandwich lateral flow immunoassay (LFIA) was introduced to detect SEA by using red-emissive AIE nanoparticles (AIENPs) as the fluorescent nanoprobe. The nanoprobe was constructed by directly immobilising antibodies on boronate-tagged AIENPs (PBA-AIENPs) via a boronate affinity reaction, which exhibited a high SEA-specific affinity and remarkable fluorescent performance. Under optimal conditions, the ultrasensitive detection of SEA in pasteurised milk was achieved within 20 min with a limit of detection of 0.04 ng mL-1. The average recoveries of the PBA-AIENP-LFIA ranged from 91.3% to 117.6% and the coefficient of variation was below 15%. It was also demonstrated that the PBA-AIENP-LFIA had an excellent selectivity against other SE serotypes. Taking advantage of the excellent sensitivity of this approach, real chicken and salad samples were further analysed, with a high versatility and accuracy. The proposed PBA-AIENP-LFIA platform shows promise as a potent tool for the identification of additional compounds in food samples as well as an ideal test method for on-site detections.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Animales , Enterotoxinas/análisis , Inmunoensayo/métodos , Leche/química , Límite de Detección , Oro
15.
J Agric Food Chem ; 71(8): 3876-3884, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791339

RESUMEN

Aflatoxin B1 (AFB1) contamination is an important issue for the safety of edible oils. Enzymatic degradation is a promising approach for removing mycotoxins in a specific, efficient, and green manner. However, enzymatic degradation of mycotoxins in edible oil is challenging as a result of the low activity and stability of the enzyme. Herein, a novel strategy was proposed to degrade AFB1 in peanut oil using an amphipathic laccase-inorganic hybrid nanoflower (Lac NF-P) as a biocatalyst. Owing to the improved microenvironment of the enzymatic reaction and the enhanced stability of the enzyme structure, the proposed amphipathic Lac NF-P showed 134- and 3.2-fold increases in the degradation efficiency of AFB1 in comparison to laccase and Lac NF, respectively. AFB1 was removed to less than 0.96 µg/kg within 3 h when using Lac NF-P as a catalyst in the peanut oil, with the AFB1 concentration ranging from 50 to 150 µg/kg. Moreover, the quality of the peanut oil had no obvious change, and no leakage of catalyst was observed after the treatment of Lac NF-P. In other words, our study may open an avenue for the development of a novel biocatalyst for the detoxification of mycotoxins in edible oils.


Asunto(s)
Aflatoxina B1 , Lacasa , Aflatoxina B1/análisis , Biodegradación Ambiental , Aceite de Cacahuete , Nanoestructuras
16.
Anal Chim Acta ; 1247: 340869, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36781245

RESUMEN

Organic fluorescein dye-embedded fluorescent microspheres (FMs) are currently the most established commercially fluorescent markers, and they have been widely used to improve the sensitivity of immunochromatography assay (ICA). However, these FMs have natural defects, such as the aggregation-caused quenching effect and small Stokes shift, which are not conducive to improving the detection performance of ICA. Herein, two green emitted FMs, namely aggregation-induced emission FMs (AIEFMs) and fluorescein isothiocyanate FMs (FITCFMs), were prepared by swelling the AIE luminogens and FITC dyes into the carboxyl group-modified polystyrene microspheres. The average diameters of AIEFMs and FITCFMs were 350 and 450 nm, respectively. Compared with FITCFMs, the AIEFMs exhibited stronger fluorescence intensity and a larger Stokes shift. These two FMs were used as the labeling markers of ICA for procalcitonin (PCT) detection with the sandwich format. Among them, AIEFM-ICA showed dynamic linear detection of PCT from 7.6 pg mL-1 to 125 ng mL-1 with the limit of detection (LOD) at 3.8 pg mL-1. These values were remarkably superior to those of FITCFM-ICA (linear range from 61 pg mL-1 to 62.5 ng mL-1 and LOD value at 60 pg mL-1). Furthermore, the average recoveries of the intra- and inter-assays of AIEFM-ICA ranged from 86% to 112%, with coefficients of variation ranging from 1.2% to 8.8%, indicating accuracy and precision for PCT quantitative detection. Additionally, the reliability of the developed AIEFM-ICA was further assessed by analyzing 30 real serum samples from systemic inflammatory response by infectious diseases, and the results showed good agreement with the chemiluminescence immunoassay. In conclusion, compared with traditional FITCFMs, green emitted AIEFMs as a novel fluorescent label, exhibits greater potential to enhance the detection performance of the ICA platform.


Asunto(s)
Colorantes , Luminiscencia , Microesferas , Reproducibilidad de los Resultados , Cromatografía de Afinidad/métodos , Fluoresceínas , Inmunoensayo/métodos
17.
Mikrochim Acta ; 190(2): 56, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36645516

RESUMEN

Ultrabright green-emissive AIE nanoparticles (AIENPs) were used as signal-amplification probes to enhance the detectability of lateral flow immunoassay (LFIA). The detection performances of the green-emissive AIENP probes in both sandwich and competitive LFIA formats were systematically evaluated. Benefiting from its remarkable fluorescent brightness, the developed AIENP-LFIA showed versatile applicability for the detection of small molecules and macromolecules by using ochratoxin A (OTA) and procalcitonin (PCT) as model analytes, respectively. Under the optimum conditions, the detection limits (LODs) of the fabricated AIENP-LFIA for OTA and PCT were 0.043 ng mL-1 and 0.019 ng mL-1, respectively. These LOD values are significantly lower than those of conventional LFIA methods using gold nanoparticles as signal reporters. In addition, we demonstrated the practical application potential of AIENP-LFIA for the detection of OTA in real maize samples and PCT in real serum samples. These results indicated that the ultrabright green-emissive AIENPs were promising as signal output materials for building high-performance LFIA platform and broadening the application scenarios of LFIA.


Asunto(s)
Nanopartículas del Metal , Oro , Inmunoensayo/métodos
18.
ACS Appl Mater Interfaces ; 15(5): 6859-6867, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36629255

RESUMEN

Mycotoxin is an important contaminant in food and the environment. The conventional methods for detoxification of mycotoxins are plagued by high chemical consumption, secondary pollution, and specific equipment required. In this study, we propose a chemoenzymatic cascade reaction for mycotoxin removal in an effective and green manner using an enzyme-metal hybrid catalyst synthesized by compartmental co-immobilized glucose oxidase (GOx) and Fe3O4 nanoparticles (NPs) on a flower-shaped covalent organic framework (COF). The GOx-Fe3O4@COF hybrid catalyst exhibits excellent activity in mycotoxin removal due to the enrichment of mycotoxins in COF and the cooperative catalysis between GOx and Fe3O4 NPs. The degradation efficiency of aflatoxin B1 (AFB1) in the chemoenzymatic cascade reaction catalyzed by GOx-Fe3O4@COF is 3.5 times higher than that in the Fenton reaction catalyzed by Fe3O4@COF. The GOx-Fe3O4@COF hybrid catalyst is highly active in a wide pH range of 3.0-7.0, overcoming the limitation of the Fenton reaction that can only perform below pH 3.0. This study provides a powerful tool for the efficient removal of mycotoxins.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Glucosa Oxidasa , Metales , Catálisis
19.
Adv Colloid Interface Sci ; 311: 102828, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36587470

RESUMEN

Sensitive and facile detection of analytes is crucial in various fields such as agriculture production, food safety, clinical diagnosis and therapy, and environmental monitoring. However, the synergy of complicated sample pretreatment and detection is an urgent challenge. By integrating the inherent porosity, processability and flexibility of films and the diversified merits of nanomaterials, nanomaterial-based films have evolved as preferred candidates to meet the above challenge. Recent years have witnessed the flourishment of films-based detection technologies due to their unique porous structures and integrated physical/chemical merits, which favors the separation/collection and detection of analytes in a rapid, efficient and facile way. In particular, films based on nanomaterials consisting of 0D metal-organic framework particles, 1D nanofibers and carbon nanotubes, and 2D graphene and analogs have drawn increasing attention due to incorporating new properties from nanomaterials. This paper summarizes the progress of the fabrication of emerging films based on nanomaterials and their detection applications in recent five years, focusing on typical electrochemical and optical methods. Some new interesting applications, such as point-of-care testing, wearable devices and detection chips, are proposed and emphasized. This review will provide insights into the integration and processability of films based on nanomaterials, thus stimulate further contributions towards films based on nanomaterials for high-performance analytical-chemistry-related applications.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanoestructuras , Nanotubos de Carbono , Nanotubos de Carbono/química , Técnicas Biosensibles/métodos , Nanoestructuras/química , Grafito/química , Monitoreo del Ambiente
20.
Toxins (Basel) ; 15(1)2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36668898

RESUMEN

Lateral flow immunoassay (LFIA) based on fluorescent microbeads has attracted much attention for its use in rapid and accurate food safety monitoring. However, conventional fluorescent microbeads are limited by the aggregation-caused quenching effect of the loaded fluorophores, thus resulting in low signal intensity and insufficient sensitivity of fluorescent LFIA. In this study, a green-emitting fluorophore with an aggregation-induced emission (AIE) characteristic was encapsulated in polymer nanoparticles via an emulsification technique to form ultrabright fluorescent microbeads (denoted as AIEMBs). The prepared AIEMBs were then applied in a competitive LFIA (AIE-LFIA) as signal reporters for the rapid and highly sensitive screening of fumonisin B1 (FB1) in real corn samples. High sensitivity with a detection limit of 0.024 ng/mL for FB1 was achieved by the developed AIE-LFIA. Excellent selectivity, good accuracy, and high reliability of the AIE-LFIA were demonstrated, indicating a promising platform for FB1 screening.


Asunto(s)
Oro , Nanopartículas del Metal , Reproducibilidad de los Resultados , Microesferas , Inmunoensayo/métodos , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA