Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 581
Filtrar
1.
Chin Med J (Engl) ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39238075

RESUMEN

BACKGROUND: Biliary tract carcinoma (BTC) is relatively rare and comprises a spectrum of invasive tumors arising from the biliary tree. The prognosis is extremely poor. The incidence of BTC is relatively high in Asian countries, and a high number of cases are diagnosed annually in China owing to the large population. Therefore, it is necessary to clarify the epidemiology and high-risk factors for BTC in China. The signs associated with BTC are complex, often require collaborative treatment from surgeons, endoscopists, oncologists, and radiation therapists. Thus, it is necessary to develop a comprehensive Chinese guideline for BTC. METHODS: This clinical practice guideline (CPG) was developed following the process recommended by the World Health Organization. The Grading of Recommendations Assessment, Development, and Evaluation approach was used to assess the certainty of evidence and make recommendations. The full CPG report was reviewed by external guideline methodologists and clinicians with no direct involvement in the development of this CPG. Two guideline reporting checklists have been adhered to: Appraisal of Guidelines for Research and Evaluation (AGREE) and Reporting Items for practice Guidelines in Healthcare (RIGHT). RESULTS: The guideline development group, which comprised 85 multidisciplinary clinical experts across China. After a controversies conference, 17 clinical questions concerning the prevention, diagnosis, and treatment of BTC were proposed. Additionally, detailed descriptions of the surgical principles, perioperative management, chemotherapy, immunotherapy, targeted therapy, radiotherapy, and endoscopic management were proposed. CONCLUSIONS: The guideline development group created a comprehensive Chinese guideline for the diagnosis and treatment of BTC, covering various aspects of epidemiology, diagnosis, and treatment. The 17 clinical questions have important reference value for the management of BTC.

2.
Cell Signal ; 124: 111421, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299601

RESUMEN

Sunitinib resistance presents a significant challenge in the treatment of clear cell renal cell carcinoma (ccRCC). The role of TRIB3, a newly identified oncogene, in tumor drug resistance has been widely studied. However, the mechanism by which TRIB3 contributes to sunitinib resistance in ccRCC has not been previously explored. This study aimed to investigate the mechanism through which TRIB3 regulates ferroptosis to increase the susceptibility of ccRCC to sunitinib treatment. Bioinformatics analysis and experimental validation revealed that TRIB3 is significantly upregulated in ccRCC tissues and is associated with poor prognosis. Knockdown of TRIB3 using siRNA transfection inhibited the proliferation and migration of ccRCC cells and induced ferroptosis. Following sunitinib treatment, TRIB3 knockdown increased cell sensitivity to sunitinib, enhanced the suppressive impact of sunitinib, and augmented sunitinib-induced ferroptosis. This study demonstrated that TRIB3 knockdown induces ferroptosis by targeting the SLC7A11/GPX4 pathway and enhances therapeutic efficacy of sunitinib for ccRCC, providing new insights and potential strategies to overcome the challenge of sunitinib resistance in ccRCC.

3.
Sci Total Environ ; 954: 176224, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270858

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a class of globally ubiquitous persistent organic pollutants (POPs). The developmental and reproductive toxicity of PFAS have attracted considerable attention. However, the influence of PFAS exposure on genomic stability of germ cells remains unexplored. In this study, we evaluated long-term reproductive toxicity of environmentally relevant levels of four long-chain PFAS compounds: perfluorooctanoic acid (PFOA, C8), perfluorononanoic acid (PFNA, C9), perfluorodecanoic acid (PFDA, C10), and perfluorooctanesulfonic acid (PFOS, C8), and examined their germ-cell mutagenicity in Caenorhabditis elegans. Our findings reveal that multigenerational exposure to PFAS exhibited minor impacts on development and reproduction of worms. Among all tested PFAS, PFNA significantly increased mutation frequencies of progeny by preferentially inducing T:A â†’ C:G substitutions and small indels within repetitive regions. Further analysis of mutation spectra uncovered elevated frequencies of microhomology-mediated deletions and large deletions in PFOA-treated worms, indicating its potential activity in eliciting DNA double-strand breaks. This study provides the first comparative analysis of the genome-wide mutational profile of PFAS compounds, underscoring the importance of assessing germ-cell mutagenic actions of long-chain PFAS.

4.
Heliyon ; 10(16): e36273, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253244

RESUMEN

With the rapid development of informatization, a vast amount of data is continuously generated and accumulated, leading to the emergence of cloud storage services. However, data stored in the cloud is beyond the control of users, posing various security risks. Cloud data auditing technology enables the inspection of data integrity in the cloud without the necessity of data downloading. Among these, public auditing schemes have experienced rapid development due to their ability to avoid additional user auditing expenses. However, malicious third-party auditors can compromise data privacy. This paper proposes an improved identity-based cloud auditing scheme that can resist malicious auditors. This scheme is also constructed on an identity-based public auditing scheme using blockchain to prevent malicious auditing. We found the scheme is not secure because a malicious cloud server can forge authentication tags for outsourced data blocks, while our scheme has not these security flaws. Through security proofs and performance analysis, we further demonstrate that our scheme is secure and efficient. Additionally, our scheme has typical application scenarios.

5.
J Environ Manage ; 370: 122512, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278014

RESUMEN

The escalating occurrence of the antibiotic Sulfamethoxazole (SMX) in the environment presents a significant global threat to ecological systems and human health. Despite the growing interest in using microalgae for antibiotic biodegradation, strategies to enhance SMX elimination remain underexplored. In this study, we isolated a novel aggregation-algae consortium (AAC) from a municipal wastewater treatment plant (WWTP) and examined its potential for SMX removal, optimized culture conditions, SMX metabolite fate and the physicochemical impact on microalgal cells. The findings revealed that the AAC demonstrated remarkable resistance to SMX, even at concentrations as high as 10 mg/L, and could degrade SMX via free radical reactions. Although ion repulsion limited the biodegradation of AAC, the addition of peptone and yeast extract resulted in a significant enhancement, increased by 16.71%, 39.12% and 46.77% of three SMX groups. Moreover, AAC exhibited exceptional adaptability in real wastewater, achieving removal of 87.05%, 97.39% and 20.80% for total dissolved nitrogen, total dissolved phosphorus and SMX, respectively. The decreased degradation toxicity of SMX following AAC treatment was further validated by ECOSAR software and in vitro tests using Caenorhabditis elegans. This study advanced our understanding of SMX biodegradation and provided a novel approach for treating wastewater contaminated with SMX.

6.
Biomolecules ; 14(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199428

RESUMEN

PURPOSE: This study aims to explore the potential mechanisms of esculin in the treatment of renal cell carcinoma (RCC). METHODS: We employed network pharmacology to predict the potential mechanisms and targets of esculin in RCC. Molecular docking techniques were then employed to validate the predicted targets. Additionally, a series of in vitro experiments were conducted to verify the anticancer effects of esculin on RCC cells, including the CCK-8 assay, EdU assay, wound healing assay, apoptosis assay, and Western blot. RESULTS: Network pharmacology and molecular docking results identified GAPDH, TNF, GSK3B, CCND1, MCL1, IL2, and CDK2 as core targets. GO and KEGG analyses suggested that esculin may influence apoptotic processes and target the PI3K/Akt pathway in RCC. Furthermore, the CCK-8 assay demonstrated that esculin inhibited RCC cell viability. Microscopic observations revealed that following esculin treatment, there was an increase in cell crumpling, a reduction in cell density, and an accumulation of floating dead cells. Additionally, with increasing esculin concentrations, the proportion of EdU-positive cells decreased, the wound closure ratio decreased, the proportion of PI-positive cells increased, the expression levels of BAX and cleaved-caspase-3 proteins increased, and the expression level of Bcl2 protein decreased. These findings suggested that esculin inhibits the proliferation and migration of RCC cells while promoting apoptosis. Moreover, esculin was found to target GAPDH and inhibit the PI3K/Akt pathway. CONCLUSIONS: This study is the first to elucidate the therapeutic effects of esculin on RCC cells. The results provide evidence supporting the clinical application of esculin and introduce a promising new candidate for RCC treatment.


Asunto(s)
Apoptosis , Carcinoma de Células Renales , Esculina , Neoplasias Renales , Simulación del Acoplamiento Molecular , Farmacología en Red , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Esculina/farmacología , Esculina/química , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Movimiento Celular/efectos de los fármacos
7.
Environ Sci Technol ; 58(33): 14918-14928, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39106127

RESUMEN

Aluminum-based coagulation has long been regarded as a reliable and cost-effective process for the defluoridation of industrial effluents. However, such a well-recognized viewpoint is challenged by the underestimation of fluoride levels in treated effluents. Herein, we developed a systematic protocol to distinguish different fluoride species, including free F-, exchangeable fluoride (EF), and nonexchangeable fluoride (NEF). We demonstrated that EF forms complexes with octahedral aluminum (AlO6) on the surface of polyaluminum and can be exchanged with (1,2-cyclohexylenedinitrilo)-tetraacetic acid (CDTA). However, NEF is incorporated with tetrahedral aluminum (AlO4) at the core of polyaluminum, as confirmed by 19F/23Al NMR and ESI-MS analysis, and cannot be exchanged with CDTA due to steric hindrance. Increasing the aluminum coagulant dosage effectively reduced free F- levels in photovoltaic and electroplating effluents to below 1 mg/L. However, the total fluoride content, with over half in the form of EF and NEF, was above 2 mg/L, exceeding the discharge limit regulated by many local governments of China. Furthermore, both EF and NEF can gradually transform to free F- in natural waters. Our findings indicate that aluminum-based coagulation inevitably accompanies the formation of substantial amounts of EF and NEF, compromising its defluoridation efficiency toward industrial effluents.


Asunto(s)
Aluminio , Fluoruros , Aluminio/química , Fluoruros/química , Purificación del Agua/métodos
8.
J Adv Res ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089616

RESUMEN

INTRODUCTION: Ultra-high static magnetic fields (SMFs) have unique advantages in improving medical and academic research. However, the research on the early embryo exposure of ultra-high SMFs is minimal, extensive exploration is indispensable in living organisms. OBJECTIVES: The present study was aimed to study the effects of ultra-high SMFs on the early embryonic division and development of Caenorhabditis elegans (C. elegans). METHODS: Early adult parents containing fertilized eggs in vivo were exposed to SMFs at intensities ranging from 4 T to 27 T. The number of mitotic cells in the reproductive glands of the P0 worms, early embryonic cell spindle localization, embryo hatching and the reproductive as well as developmental indicators of F1 and F2 nematodes were examined as endpoints. RESULTS: Our results indicated that ultra-high SMFs has no obvious effect on the germ cell cycle, while 14 T and 27 T SMFs significantly increased the proportion of multi-polar spindle formation in early embryonic cells, and reduced the developmental rate and lifespan of C. elegans exposed at the embryonic stage. Spindle abnormalities of early embryonic cells, as well as the down-regulation of genes related to asymmetric embryonic division and the abnormal expression of the non-muscle myosin NMY-2 in the division grooves played a critical role in the slowing down of embryonic development induced by ultra-high SMFs. CONCLUSIONS: This study provided novel information and a new sight for evaluating the biosafety assessment by exposure to ultra-high SMFs at the early embryonic stage in vivo.

9.
J Hazard Mater ; 477: 135345, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39084013

RESUMEN

Imidacloprid (IMI) is used extensively as an insecticide and poses a significant risk to both the ecological environment and human health. Biological methods are currently gaining recognition among the different strategies tested for wastewater treatment. This study focused on evaluating a recently discovered green alga, Scenedesmus sp. TXH202001, isolated from a municipal wastewater treatment plant (WWTP), exhibited notable capacity for IMI removal. After an 18-day evaluation, medium IMI concentrations (50 and 100 mg/L) facilitated the growth of microalgae whereas low (5 and 20 mg/L) and high (150 mg/L) concentrations had no discernible impact. No statistically significant disparities were detected in Fv/Fm, Malonaldehyde or Superoxide dismutase across all concentrations, suggesting Scenedesmus sp. TXH202001 exhibited notable resilience and adaptability to IMI conditions. Most notably, Scenedesmus sp. TXH202001 successfully eliminated > 99 % of IMI within 18 days subjected to IMI concentrations as high as 150 mg/L, which was contingent on the environmental factor of illumination. Molecular docking was used to identify the chemical reaction sites between IMI and typical degrading enzyme CYP450. Furthermore, the study revealed that the primary path for IMI removal was biodegradation and verified that the toxicity of the degraded product was lower than parent IMI in Caenorhabditis elegans. The efficacy of Scenedesmus sp. TXH202001 in wastewater was exceptional, thereby validating its practical utility.


Asunto(s)
Biodegradación Ambiental , Insecticidas , Neonicotinoides , Nitrocompuestos , Scenedesmus , Contaminantes Químicos del Agua , Scenedesmus/metabolismo , Scenedesmus/efectos de los fármacos , Scenedesmus/crecimiento & desarrollo , Neonicotinoides/metabolismo , Neonicotinoides/toxicidad , Neonicotinoides/química , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Nitrocompuestos/metabolismo , Nitrocompuestos/toxicidad , Nitrocompuestos/química , Insecticidas/toxicidad , Insecticidas/metabolismo , Insecticidas/química , Luz , Aguas Residuales/química
10.
J Biol Chem ; 300(8): 107494, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925326

RESUMEN

The commitment of stem cells to differentiate into osteoblasts is a highly regulated and complex process that involves the coordination of extrinsic signals and intrinsic transcriptional machinery. While rodent osteoblastic differentiation has been extensively studied, research on human osteogenesis has been limited by cell sources and existing models. Here, we systematically dissect human pluripotent stem cell-derived osteoblasts to identify functional membrane proteins and their downstream transcriptional networks involved in human osteogenesis. Our results reveal an enrichment of type II transmembrane serine protease CORIN in humans but not rodent osteoblasts. Functional analyses demonstrated that CORIN depletion significantly impairs osteogenesis. Genome-wide chromatin immunoprecipitation enrichment and mechanistic studies show that p38 MAPK-mediated CCAAT enhancer binding protein delta (CEBPD) upregulation is required for CORIN-modulated osteogenesis. Contrastingly, the type I transmembrane heparan sulfate proteoglycan SDC1 enriched in mesenchymal stem cells exerts a negative regulatory effect on osteogenesis through a similar mechanism. Chromatin immunoprecipitation-seq, bulk and single-cell transcriptomes, and functional validations indicated that CEBPD plays a critical role in controlling osteogenesis. In summary, our findings uncover previously unrecognized CORIN-mediated CEBPD transcriptomic networks in driving human osteoblast lineage commitment.


Asunto(s)
Proteína delta de Unión al Potenciador CCAAT , Osteoblastos , Osteogénesis , Serina Endopeptidasas , Humanos , Osteoblastos/metabolismo , Osteoblastos/citología , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Perfilación de la Expresión Génica , Diferenciación Celular , Animales , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Transcriptoma , Ratones
11.
mSphere ; 9(6): e0027624, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38832781

RESUMEN

This study aimed to characterize carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from Jiangxi patients using whole-genome sequencing (WGS). We subjected 100 clinical CRAB strains isolated from the three local largest teaching hospitals to WGS and antimicrobial susceptibility testing. Molecular epidemiology was investigated using multilocus sequence typing, core genome multilocus typing, core genome single-nucleotide polymorphism phylogeny, and pulsed-field gel electrophoresis. The most prevalent acquired carbapenemase was blaOXA-23, predominant in all isolates (100%). Isolates belonging to the dominating international clone IC2 accounted for 92% of all isolates. International IC11 (ST164Pas/ST1418Ox) clone was found in an additional 8% (eight isolates), with seven isolates (87.5%) carrying an acquired additional blaNDM-1 carbapenemase. The oxa23-associated Tn2009, either alone or in a tandem repeat structure containing four copies of blaOXA-23, was discovered in 62% (57 isolates) of IC2. The oxa23-associated Tn2006 was identified in 38% (35 isolates) of IC2 and all IC11 isolates. A putative conjugative RP-T1 (formerly RepAci6) plasmid with blaOXA-23 in Tn2006 within AbaR4, designated pSRM1.1, was found in IC2 A. baumannii strain SRM1. The blaNDM-1 gene found in seven IC11 isolates was located on a novel Tn6924-like transposon, a first-time report in IC11. These findings underscore the significant importance of real-time surveillance to prevent the further spread of CRAB. IMPORTANCE: Carbapenem-resistant Acinetobacter baumannii (CRAB) is notorious for causing difficult-to-treat infections. To elucidate the molecular and clinical epidemiology of CRAB in Jiangxi, clinical CRAB isolates were collected and underwent whole-genome sequencing and antibiotic susceptibility phenotyping. Key findings included the predominance of OXA-23-producing IC2 A. baumannii, marked by the emergence of OXA-23 and NDM-1-producing IC11 strains.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas Bacterianas , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Secuenciación Completa del Genoma , beta-Lactamasas , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/enzimología , beta-Lactamasas/genética , Humanos , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/epidemiología , Proteínas Bacterianas/genética , Estudios Retrospectivos , Antibacterianos/farmacología , Carbapenémicos/farmacología , Genoma Bacteriano , Filogenia , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Electroforesis en Gel de Campo Pulsado , Plásmidos/genética , Polimorfismo de Nucleótido Simple , Genómica
12.
Sci Total Environ ; 940: 173641, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38825205

RESUMEN

From both environment and health perspectives, sustainable management of ever-growing soil contamination by heavy metal is posing a serious global concern. The potential ecotoxicity of cadmium (Cd) to soil and ecosystem seriously threatens human health. Developing efficient, specific, and long-term remediation technology for Cd-contaminated soil is impending to synchronously minimize the bioavailability and ecotoxicity of Cd. In the present study, zinc oxide/graphene oxide nanocomposite (ZnO/GO) was developed as a novel amendment for remediating Cd-contaminated soil. Our results showed that ZnO/GO effectively decreased the available soil Cd content, and increased pH and cation exchange capacity (CEC) in both Cd-spiked standard soil and Cd-contaminated mine field soil through the interaction between ZnO/GO and soil organic acids. Using Caenorhabditis elegans (C. elegans) as a model organism for soil safety evaluation, ZnO/GO was further proved to decrease the ecotoxicity of Cd-contaminated soil. Specifically, ZnO/GO promoted Cd excretion and declined Cd storage in C. elegans by increasing the expression of gene ttm-1 and decreasing the level of gene cdf-2, which were responsible for Cd transportation and Cd accumulation, respectively. Moreover, the efficacy of ZnO/GO in remediating the properties and ecotoxicity of Cd-contaminated soil increased gradually with the time gradient, and could maintain a long-term effect after reaching the optimal remediation efficiency. Our findings established a specific and long-term strategy to simultaneously improve soil properties and reduce ecotoxicity of Cd-contaminated soil, which might provide new insights into the potential application of ZnO/GO in soil remediation for both ecosystem and human health.


Asunto(s)
Cadmio , Restauración y Remediación Ambiental , Grafito , Nanocompuestos , Contaminantes del Suelo , Óxido de Zinc , Óxido de Zinc/toxicidad , Cadmio/toxicidad , Restauración y Remediación Ambiental/métodos , Animales , Disponibilidad Biológica , Caenorhabditis elegans/efectos de los fármacos , Suelo/química
13.
Am Surg ; : 31348241250044, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712351

RESUMEN

BACKGROUND: Multi-organ metastases represent a substantial life-threatening risk for breast cancer (BC) patients. Nonetheless, the current dearth of assessment tools for patients with multi-organ metastatic BC adversely impacts their evaluation. METHODS: We conducted a retrospective analysis of BC patients with multi-organ metastases using data from the SEER database from 2010 to 2019. The patients were randomly allocated into a training cohort and a validation cohort in a 7:3 ratio. Univariate COX regression analysis, the LASSO, and multivariate Cox regression analyses were performed to identify independent prognostic factors in the training set. Based on these factors, a nomogram was constructed to estimate overall survival (OS) probability for BC patients with multi-organ metastases. The performance of the nomogram was evaluated using C-indexes, ROC curves, calibration curves, decision curve analysis (DCA) curves, and the risk classification system for validation. RESULTS: A total of 3626 BC patients with multi-organ metastases were included in the study, with 2538 patients in the training cohort and 1088 patients in the validation cohort. Age, grade, metastasis location, surgery, chemotherapy, and subtype were identified as significant independent prognostic factors for OS in BC patients with multi-organ metastases. A nomogram for predicting 1-year, 3-year, and 5-year OS was constructed. The evaluation metrics, including C-indexes, ROC curves, calibration curves, and DCA curves, demonstrated the excellent predictive performance of the nomogram. Additionally, the risk grouping system effectively stratified BC patients with multi-organ metastases into distinct prognostic categories. CONCLUSION: The developed nomogram showed high accuracy in predicting the survival probability of BC patients with multi-organ metastases, providing valuable information for patient counseling and treatment decision making.

14.
Curr Med Sci ; 44(3): 568-577, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38789818

RESUMEN

OBJECTIVE: Diabetic foot ulcer (DFU) is one of the most serious complications of diabetes. Leukocyte- and platelet-rich fibrin (L-PRF) is a second-generation autologous platelet-rich plasma. This study aims to investigate the clinical effects of L-PRF in patients with diabetes in real clinical practice. METHODS: Patients with DFU who received L-PRF treatment and standard of care (SOC) from 2018 to 2019 in Tongji Hospital were enrolled. The clinical information including patient characteristics, wound evaluation (area, severity, infection, blood supply), SOC of DFU, and images of ulcers was retrospectively extracted and analyzed. L-PRF treatment was performed every 7±2 days until the ulcer exhibited complete epithelialization or an overall percent volume reduction (PVR) greater than 80%. Therapeutic effectiveness, including overall PVR and the overall and weekly healing rates, was evaluated. RESULTS: Totally, 26 patients with DFU were enrolled, and they had an ulcer duration of 47.0 (35.0, 72.3) days. The severity and infection of ulcers varied, as indicated by the Site, Ischemia, Neuropathy, Bacterial Infection, and Depth (SINBAD) scores of 2-6, Wagner grades of 1-4, and the Perfusion, Extent, Depth, Infection and Sensation (PEDIS) scores of 2-4. The initial ulcer volume before L-PRF treatment was 4.94 (1.50, 13.83) cm3, and the final ulcer volume was 0.35 (0.03, 1.76) cm3. The median number of L-PRF doses was 3 (2, 5). A total of 11 patients achieved complete epithelialization after the fifth week of treatment, and 19 patients achieved at least an 80% volume reduction after the seventh week. The overall wound-healing rate was 1.47 (0.63, 3.29) cm3/week, and the healing rate was faster in the first 2 weeks than in the remaining weeks. Concurrent treatment did not change the percentage of complete epithelialization or healing rate. CONCLUSION: Adding L-PRF to SOC significantly improved wound healing in patients with DFU independent of the ankle brachial index, SINBAD score, or Wagner grade, indicating that this method is appropriate for DFU treatment under different clinical conditions.


Asunto(s)
Pie Diabético , Leucocitos , Fibrina Rica en Plaquetas , Cicatrización de Heridas , Humanos , Pie Diabético/terapia , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Resultado del Tratamiento
15.
ACS Appl Mater Interfaces ; 16(23): 29716-29727, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814480

RESUMEN

The emergence of XBB.1.16 has gained rapid global prominence. Previous studies have elucidated that the infection of SARS-CoV-2 induces alterations in the mitochondrial integrity of host cells, subsequently influencing the cellular response to infection. In this study, we compared the differences in infectivity and pathogenicity between XBB.1.16 and the parental Omicron sublineages BA.1 and BA.2 and assessed their impact on host mitochondria. Our findings suggest that, in comparison with BA.1 and BA.2, XBB.1.16 exhibits more efficient spike protein cleavage, more efficient mediating syncytia formation, mild mitochondriopathy, and less pathogenicity. Altogether, our investigations suggest that, based on the mutation of key sites, XBB.1.16 exhibited enhanced infectivity but lower pathogenicity. This will help us to further investigate the biological functions of key mutation sites.


Asunto(s)
COVID-19 , Mitocondrias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Humanos , COVID-19/virología , Mitocondrias/metabolismo , Animales , Mutación , Chlorocebus aethiops , Células Vero , Ratones , Células HEK293
16.
Langmuir ; 40(21): 11067-11077, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38739539

RESUMEN

In recent years, graphitic carbon nitride (g-C3N4) has attracted considerable attention because it includes earth-abundant carbon and nitrogen elements and exhibits good chemical and thermal stability owing to the strong covalent interaction in its conjugated layer structure. However, bulk g-C3N4 has some disadvantages of low specific surface area, poor light absorption, rapid recombination of photogenerated charge carriers, and insufficient active sites, which hinder its practical applications. In this study, we design and synthesize potassium single-atom (K SAs)-doped g-C3N4 porous nanosheets (CM-KX, where X represents the mass of KHP added) via supramolecular self-assembling and chemical cross-linking copolymerization strategies. The results show that the utilization of supramolecules as precursors can produce g-C3N4 nanosheets with reduced thickness, increased surface area, and abundant mesopores. In addition, the intercalation of K atoms within the g-C3N4 nitrogen pots through the formation of K-N bonds results in the reduction of the band gap and expansion of the visible-light absorption range. The optimized K-doped CM-K12 nanosheets achieve a specific surface area of 127 m2 g-1, which is 11.4 times larger than that of the pristine g-C3N4 nanosheets. Furthermore, the optimal CM-K12 sample exhibits the maximum H2 production rate of 127.78 µmol h-1 under visible light (λ ≥ 420 nm), which is nearly 23 times higher than that of bare g-C3N4. This significant improvement of photocatalytic activity is attributed to the synergistic effects of the mesoporous structure and K SAs doping, which effectively increase the specific surface area, improve the visible-light absorption capacity, and facilitate the separation and transfer of photogenerated electron-hole pairs. Besides, the optimal sample shows good chemical stability for 20 h in the recycling experiments. Density functional theory calculations confirm that the introduction of K SAs significantly boosts the adsorption energy for water and decreases the activation energy barrier for the reduction of water to hydrogen.

17.
Shock ; 62(1): 146-152, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38668801

RESUMEN

ABSTRACT: Objective: This study aimed to explore the impact of heat stress (HS) on glutamate transmission-dependent expression levels of interleukin-1ß (IL-1ß) and IL-18 in BV-2 microglial cells. Methods: BV-2 microglial cells were cultured in vitro , with cells maintained at 37°C serving as the control. The HS group experienced incubation at 40°C for 1 h, followed by further culturing at 37°C for 6 or 12 h. The experimental group was preincubated with glutamate, the glutamate antagonist riluzole, or the mGluR5 agonist, 2-chloro-5-hydroxyphenylglycine (CHPG), before HS. Glutamate content in BV-2 culture supernatant was assessed using colorimetric assay. Moreover, mRNA expression levels of EAAT3 and/or mGluR5 in BV-2 cells were determined via quantitative polymerase chain reaction. Interleukins (IL-1ß and IL-18) in cell culture supernatant were measured using enzyme-linked immunosorbent assay. Western blot analysis was employed to assess protein levels of IL-1ß and IL-18 in BV-2 cells. Results: HS induced a significant release of glutamate and increased the expression levels of mGluR5 and EAAT3 in BV-2 cells. It also triggered the expression levels and release of proinflammatory factors, such as IL-1ß and IL-18, synergizing with the effects of glutamate treatment. Preincubation with both riluzole and CHPG significantly reduced HS-induced glutamate release and mitigated the increased expression levels and release of IL-1ß and IL-18 induced by HS. Conclusion: The findings confirmed that microglia could be involved in HS primarily through glutamate metabolisms, influencing the expression levels and release of IL-1ß and IL-18.


Asunto(s)
Ácido Glutámico , Interleucina-18 , Interleucina-1beta , Microglía , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Animales , Ácido Glutámico/metabolismo , Ratones , Respuesta al Choque Térmico , Línea Celular , Receptor del Glutamato Metabotropico 5/metabolismo , Riluzol/farmacología
18.
Am J Cancer Res ; 14(2): 655-678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455404

RESUMEN

Lung cancer stands as the predominant cause of cancer-related mortality globally. Lung adenocarcinoma (LUAD), being the most prevalent subtype, garners extensive attention due to its notable heterogeneity, which significantly influences tumor development and treatment approaches. This research leverages single-cell RNA sequencing (scRNA-seq) datasets to delve into the impact of KRAS/TP53 co-mutation status on LUAD. Moreover, utilizing the TCGA-LUAD dataset, we formulated a novel predictive risk model, comprising seven prognostic genes, through LASSO regression, and subjected it to both internal and external validation sets. The study underscores the profound impact of KRAS/TP53 co-mutational status on the tumor microenvironment (TME) of LUAD. Crucially, KRAS/TP53 co-mutation markedly influences the extent of B cell infiltration and various immune-related pathways within the TME. The newly developed predictive risk model exhibited robust performance across both internal and external validation sets, establishing itself as a viable independent prognostic factor. Additionally, in vitro experiments indicate that MELTF and PLEK2 can modulate the invasion and proliferation of human non-small cell lung cancer cells. In conclusion, we elucidated that KRAS/TP53 co-mutations may modulate TME and patient prognosis by orchestrating B cells and affiliated pathways. Furthermore, we spotlight that MELTF and PLEK2 not only function as prognostic indicators for LUAD, but also lay the foundation for the exploration of innovative therapeutic approaches.

19.
Org Biomol Chem ; 22(13): 2654-2661, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470359

RESUMEN

This study presents a green and practical visible-light-induced photosensitizer-free decarbonylative Minisci-type reaction using aldehydes as alkyl radical precursors. The photocatalytic system exhibits a broad substrate scope and synthetically useful yields. Mechanistic experiments revealed that alkyl radicals could be generated through auto-oxidation of aldehydes under irradiation, which is a mild and effective method for achieving late-stage functionalization of N-heteroarenes. Some biologically active N-heteroarenes could be alkylated using this photocatalytic system smoothly.

20.
Environ Res ; 252(Pt 1): 118820, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555093

RESUMEN

As a typical energetic compound widely used in military activities, 2,4,6-trinitrotoluene (TNT) has attracted great attention in recent years due to its heavy pollution and wide distribution in and around the training facilities, firing ranges, and demolition sites. However, the subcellular targets and the underlying toxic mechanism of TNT remain largely unknown. In this study, we explored the toxic effects of TNT biological reduction on the mitochondrial function and homeostasis in Caenorhabditis elegans (C. elegans). With short-term exposure of L4 larvae, 10-1000 ng/mL TNT reduced mitochondrial membrane potential and adenosine triphosphate (ATP) content, which was associated with decreased expression of specific mitochondrial complex involving gas-1 and mev-1 genes. Using fluorescence-labeled transgenic nematodes, we found that fluorescence expression of sod-3 (muls84) and gst-4 (dvls19) was increased, suggesting that TNT disrupted the mitochondrial antioxidant defense system. Furthermore, 10 ng/mL TNT exposure increased the expression of the autophagy-related gene pink-1 and activated mitochondrial unfolded protein response (mt UPR), which was indicated by the increased expression of mitochondrial stress activated transcription factor atfs-1, ubiquitin-like protein ubl-5, and homeobox protein dve-1. Our findings demonstrated that TNT biological reduction caused mitochondrial dysfunction and the development of mt UPR protective stress responses, and provided a basis for determining the potential risks of energetic compounds to living organisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mitocondrias , Trinitrotolueno , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Trinitrotolueno/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transporte de Electrón/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Adenosina Trifosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA