Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Quant Imaging Med Surg ; 13(12): 8350-8357, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38106260

Background: Background parenchymal enhancement (BPE) is defined as the enhanced proportion of normal fibroglandular tissue on enhanced magnetic resonance imaging. BPE shows promise as a quantitative imaging biomarker (QIB). However, the lack of consensus among radiologists in their semi-quantitative grading of BPE limits its clinical utility. Methods: The main objective of this study was to develop a BPE quantification model according to clinical expertise, with the BPE integral being used as a QIB to incorporate both the volume and intensity of the enhancement metrics. The model was applied to 2,786 cases to compare our quantitative results with radiologists' semi-quantitative BPE grading to evaluate the effectiveness of using the BPE integral as a QIB for analyzing BPE. Comparisons between multiple groups of nonnormally distributed BPE integrals were performed using the Kruskal-Wallis test. Results: Our study found a considerable degree of concordance between our BPE quantitative integral and radiologists' semi-quantitative assessments. Specifically, our research results revealed significant variability in BPE integral attained through the BPE quantification framework among all semi-quantitative BPE grading groups labeled by experienced radiologists, including mild-moderate (P<0.001), mild-marked (P<0.001), and moderate-marked (P<0.001). Furthermore, there was an apparent correlation between BPE integral and BPE grades, with marked BPE displaying the highest BPE integral, followed by moderate BPE, with mild BPE exhibiting the lowest BPE integral value. Conclusions: The study developed and implemented a BPE quantification framework, which incorporated both the volume and intensity of enhancement and which could serve as a QIB for BPE.

2.
Exp Neurol ; 359: 114231, 2023 01.
Article En | MEDLINE | ID: mdl-36162512

Follistatin like protein 1 (FSTL1) is a famous growth regulatory protein. FSTL1 has been noticed in many diseases, including heart and lung ischemia, cerebral ischemia, glioma, schizophrenia, and Autism. The role of FSTL1 has been declared in the genetics and development of the central nervous system. Therefore, we designed this study to investigate the function and the role of FSTL1 in Alzheimer's disease. Firstly, we noticed upregulated expression level of FSTL1 among four to six-month-old 5XFAD AD mice. Accordingly, we hypothesized that FSTL1-Knockdown improved AD model mice's cognitive function and recover from Alzheimer's disease. Thus, AD model mice were made by single intracerebroventricular injections of Aß1-42 peptides in FSTL1+/- and CON mice. Next, our results concluded that FSTL1-knockdown effectively improved cognitive functions. FSTL1-knockdown enhanced the pattern of neural oscillations, and synaptic plasticity in Aß1-42 treated FSTL1-Knockdown mice compared to Aß1-42 induced AD model mice. Next, FSTL1-Knockdown inhibited the activation of microglia and binding of TLR-4 with microglia. Further, inactivated microglia stopped the formation of MyD88. Thus, our data revealed that FSTL1-Knockdown is slowing down the caspase/BAX/Bcl-2/TLR-4 regulating apoptosis pathway, and the expression of inflammatory cytokines in the hippocampus of Aß1-42 inserted FSTL1-Knockdown mice. Overall, all these data illuminate the clinical significance role of down-regulated FSTL1. FSTL1-Knockdown reduced the amyloid-beta by affecting microglia, neural-inflammation and apoptosis in AD-like model mice. Finally, down regulation of FSTL1 improved synaptic plasticity, neural oscillations, and cognitive behaviours in the Aß1-42 induced AD model mice.


Alzheimer Disease , Follistatin-Related Proteins , Animals , Mice , Alzheimer Disease/chemically induced , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Follistatin-Related Proteins/genetics , Toll-Like Receptor 4/metabolism , Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , Apoptosis , Inflammation/chemically induced , Inflammation/metabolism , Disease Models, Animal
...