Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Phys Rev E ; 108(2-2): 025301, 2023 Aug.
Article En | MEDLINE | ID: mdl-37723709

Phase-field modeling has become a powerful tool in describing the complex pore-structure evolution and the intricate multiphysics in nonisothermal sintering processes. However, the quantitative validity of conventional variational phase-field models involving diffusive processes is a challenge. Artificial interface effects, like the trapping effects, may originate at the interface when the kinetic properties of two opposing phases are different. On the other hand, models with prescribed antitrapping terms do not necessarily guarantee the thermodynamics variational nature of the model. This issue has been solved for liquid-solid interfaces via the development of the variational quantitative solidification phase-field model. However, there is no related work addressing the interfaces in nonisothermal sintering, where the free surfaces between the solid phase and surrounding pore regions exhibit strong asymmetry of mass and thermal properties. Also, additional challenges arise due to the conserved order parameter describing the free surfaces. In this work, we present a variational and quantitative phase-field model for nonisothermal sintering processes. The model is derived via an extended nondiagonal phase-field model. The model evolution equations have naturally cross-coupling terms between the conserved kinetics (i.e., mass and thermal transfer) and the nonconserved one (grain growth). These terms are shown via asymptotic analysis to be instrumental in ensuring the elimination of interface artifacts, while also examined to not modify the thermodynamic equilibrium condition (characterized by a dihedral angle). Moreover, we demonstrate that the trapping effects and the existence of surface diffusion in conservation laws are direction-dependent. An anisotropic interpolation scheme of the kinetic mobilities that differentiates between the normal and tangential directions along the interface is discussed. Numerically, we demonstrate the importance of the cross-couplings and the anisotropic interpolation by presenting thermal-microstructural evolutions.

2.
Phys Rev Lett ; 131(1): 016801, 2023 Jul 07.
Article En | MEDLINE | ID: mdl-37478420

We report an intrinsic strain engineering, akin to thin filmlike approaches, via irreversible high-temperature plastic deformation of a tetragonal ferroelectric single-crystal BaTiO_{3}. Dislocations well-aligned along the [001] axis and associated strain fields in plane defined by the [110]/[1[over ¯]10] plane are introduced into the volume, thus nucleating only in-plane domain variants. By combining direct experimental observations and theoretical analyses, we reveal that domain instability and extrinsic degradation processes can both be mitigated during the aging and fatigue processes, and demonstrate that this requires careful strain tuning of the ratio of in-plane and out-of-plane domain variants. Our findings advance the understanding of structural defects that drive domain nucleation and instabilities in ferroic materials and are essential for mitigating device degradation.

3.
Small ; 19(36): e2300333, 2023 Sep.
Article En | MEDLINE | ID: mdl-37150875

2D magnets can potentially revolutionize information technology, but their potential application to cooling technology and magnetocaloric effect (MCE) in a material down to the monolayer limit remain unexplored. Herein, it is revealed through multiscale calculations the existence of giant MCE and its strain tunability in monolayer magnets such as CrX3 (X = F, Cl, Br, I), CrAX (A = O, S, Se; X = F, Cl, Br, I), and Fe3 GeTe2 . The maximum adiabatic temperature change ( Δ T ad max $\Delta T_{{\rm{ad}}}^{\max }$ ), maximum isothermal magnetic entropy change, and specific cooling power in monolayer CrF3 are found as high as 11 K, 35 µJ m-2  K-1 , and 3.5 nW cm-2 under a magnetic field of 5 T, respectively. A 2% biaxial and 5% a-axis uniaxial compressive strain can remarkably increase Δ T ad max $\Delta T_{{\rm{ad}}}^{\max }$ of CrCl3 and CrOF by 230% and 37% (up to 15.3 and 6.0 K), respectively. It is found that large net magnetic moment per unit area favors improved MCE. These findings advocate the giant-MCE monolayer magnets, opening new opportunities for magnetic cooling at nanoscale.

4.
Chem Sci ; 14(3): 458-484, 2023 Jan 18.
Article En | MEDLINE | ID: mdl-36741524

Despite their rapid emergence as the dominant paradigm for electrochemical energy storage, the full promise of lithium-ion batteries is yet to be fully realized, partly because of challenges in adequately resolving common degradation mechanisms. Positive electrodes of Li-ion batteries store ions in interstitial sites based on redox reactions throughout their interior volume. However, variations in the local concentration of inserted Li-ions and inhomogeneous intercalation-induced structural transformations beget substantial stress. Such stress can accumulate and ultimately engender substantial delamination and transgranular/intergranular fracture in typically brittle oxide materials upon continuous electrochemical cycling. This perspective highlights the coupling between electrochemistry, mechanics, and geometry spanning key electrochemical processes: surface reaction, solid-state diffusion, and phase nucleation/transformation in intercalating positive electrodes. In particular, we highlight recent findings on tunable material design parameters that can be used to modulate the kinetics and thermodynamics of intercalation phenomena, spanning the range from atomistic and crystallographic materials design principles (based on alloying, polymorphism, and pre-intercalation) to emergent mesoscale structuring of electrode architectures (through control of crystallite dimensions and geometry, curvature, and external strain). This framework enables intercalation chemistry design principles to be mapped to degradation phenomena based on consideration of mechanics coupling across decades of length scales. Scale-bridging characterization and modeling, along with materials design, holds promise for deciphering mechanistic understanding, modulating multiphysics couplings, and devising actionable strategies to substantially modify intercalation phase diagrams in a manner that unlocks greater useable capacity and enables alleviation of chemo-mechanical degradation mechanisms.

5.
Patterns (N Y) ; 3(12): 100634, 2022 Dec 09.
Article En | MEDLINE | ID: mdl-36569543

The origins of performance degradation in batteries can be traced to atomistic phenomena, accumulated at mesoscale dimensions, and compounded up to the level of electrode architectures. Hyperspectral X-ray spectromicroscopy techniques allow for the mapping of compositional variations, and phase separation across length scales with high spatial and energy resolution. We demonstrate the design of workflows combining singular value decomposition, principal-component analysis, k-means clustering, and linear combination fitting, in conjunction with a curated spectral database, to develop high-accuracy quantitative compositional maps of the effective depth of discharge across individual positive electrode particles and ensembles of particles. Using curated reference spectra, accurate and quantitative mapping of inter- and intraparticle compositional heterogeneities, phase separation, and stress gradients is achieved for a canonical phase-transforming positive electrode material, α-V2O5. Phase maps from single-particle measurements are used to reconstruct directional stress profiles showcasing the distinctive insights accessible from a standards-informed application of high-dimensional chemical imaging.

6.
Nat Commun ; 13(1): 6676, 2022 Nov 05.
Article En | MEDLINE | ID: mdl-36335109

Dislocations are usually expected to degrade electrical, thermal and optical functionality and to tune mechanical properties of materials. Here, we demonstrate a general framework for the control of dislocation-domain wall interactions in ferroics, employing an imprinted dislocation network. Anisotropic dielectric and electromechanical properties are engineered in barium titanate crystals via well-controlled line-plane relationships, culminating in extraordinary and stable large-signal dielectric permittivity (≈23100) and piezoelectric coefficient (≈2470 pm V-1). In contrast, a related increase in properties utilizing point-plane relation prompts a dramatic cyclic degradation. Observed dielectric and piezoelectric properties are rationalized using transmission electron microscopy and time- and cycle-dependent nuclear magnetic resonance paired with X-ray diffraction. Succinct mechanistic understanding is provided by phase-field simulations and driving force calculations of the described dislocation-domain wall interactions. Our 1D-2D defect approach offers a fertile ground for tailoring functionality in a wide range of functional material systems.

7.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article En | MEDLINE | ID: mdl-35064084

Substantial improvements in cycle life, rate performance, accessible voltage, and reversible capacity are required to realize the promise of Li-ion batteries in full measure. Here, we have examined insertion electrodes of the same composition (V2O5) prepared according to the same electrode specifications and comprising particles with similar dimensions and geometries that differ only in terms of their atomic connectivity and crystal structure, specifically two-dimensional (2D) layered α-V2O5 that crystallizes in an orthorhombic space group and one-dimensional (1D) tunnel-structured ζ-V2O5 crystallized in a monoclinic space group. By using particles of similar dimensions, we have disentangled the role of specific structural motifs and atomistic diffusion pathways in affecting electrochemical performance by mapping the dynamical evolution of lithiation-induced structural modifications using ex situ scanning transmission X-ray microscopy, operando synchrotron X-ray diffraction measurements, and phase-field modeling. We find the operation of sharply divergent mechanisms to accommodate increasing concentrations of Li-ions: a series of distortive phase transformations that result in puckering and expansion of interlayer spacing in layered α-V2O5, as compared with cation reordering along interstitial sites in tunnel-structured ζ-V2O5 By alleviating distortive phase transformations, the ζ-V2O5 cathode shows reduced voltage hysteresis, increased Li-ion diffusivity, alleviation of stress gradients, and improved capacity retention. The findings demonstrate that alternative lithiation mechanisms can be accessed in metastable compounds by dint of their reconfigured atomic connectivity and can unlock substantially improved electrochemical performance not accessible in the thermodynamically stable phase.

8.
Nat Mater ; 21(2): 217-227, 2022 Feb.
Article En | MEDLINE | ID: mdl-34824396

Lithium-ion batteries are yet to realize their full promise because of challenges in the design and construction of electrode architectures that allow for their entire interior volumes to be reversibly accessible for ion storage. Electrodes constructed from the same material and with the same specifications, which differ only in terms of dimensions and geometries of the constituent particles, can show surprising differences in polarization, stress accumulation and capacity fade. Here, using operando synchrotron X-ray diffraction and energy dispersive X-ray diffraction (EDXRD), we probe the mechanistic origins of the remarkable particle geometry-dependent modification of lithiation-induced phase transformations in V2O5 as a model phase-transforming cathode. A pronounced modulation of phase coexistence regimes is observed as a function of particle geometry. Specifically, a metastable phase is stabilized for nanometre-sized spherical V2O5 particles, to circumvent the formation of large misfit strains. Spatially resolved EDXRD measurements demonstrate that particle geometries strongly modify the tortuosity of the porous cathode architecture. Greater ion-transport limitations in electrode architectures comprising micrometre-sized platelets result in considerable lithiation heterogeneities across the thickness of the electrode. These insights establish particle geometry-dependent modification of metastable phase regimes and electrode tortuosity as key design principles for realizing the promise of intercalation cathodes.

9.
Materials (Basel) ; 14(13)2021 Jun 22.
Article En | MEDLINE | ID: mdl-34206612

The control of nanoparticle agglomeration during the fabrication of oxide dispersion strengthened steels is a key factor in maximizing their mechanical and high temperature reinforcement properties. However, the characterization of the nanoparticle evolution during processing represents a challenge due to the lack of experimental methodologies that allow in situ evaluation during laser powder bed fusion (LPBF) of nanoparticle-additivated steel powders. To address this problem, a simulation scheme is proposed to trace the drift and the interactions of the nanoparticles in the melt pool by joint heat-melt-microstructure-coupled phase-field simulation with nanoparticle kinematics. Van der Waals attraction and electrostatic repulsion with screened-Coulomb potential are explicitly employed to model the interactions with assumptions made based on reported experimental evidence. Numerical simulations have been conducted for LPBF of oxide nanoparticle-additivated PM2000 powder considering various factors, including the nanoparticle composition and size distribution. The obtained results provide a statistical and graphical demonstration of the temporal and spatial variations of the traced nanoparticles, showing ∼55% of the nanoparticles within the generated grains, and a smaller fraction of ∼30% in the pores, ∼13% on the surface, and ∼2% on the grain boundaries. To prove the methodology and compare it with experimental observations, the simulations are performed for LPBF of a 0.005 wt % yttrium oxide nanoparticle-additivated PM2000 powder and the final degree of nanoparticle agglomeration and distribution are analyzed with respect to a series of geometric and material parameters.

10.
Science ; 372(6545): 961-964, 2021 05 28.
Article En | MEDLINE | ID: mdl-34045350

Defects are essential to engineering the properties of functional materials ranging from semiconductors and superconductors to ferroics. Whereas point defects have been widely exploited, dislocations are commonly viewed as problematic for functional materials and not as a microstructural tool. We developed a method for mechanically imprinting dislocation networks that favorably skew the domain structure in bulk ferroelectrics and thereby tame the large switching polarization and make it available for functional harvesting. The resulting microstructure yields a strong mechanical restoring force to revert electric field-induced domain wall displacement on the macroscopic level and high pinning force on the local level. This induces a giant increase of the dielectric and electromechanical response at intermediate electric fields in barium titanate [electric field-dependent permittivity (ε33) ≈ 5800 and large-signal piezoelectric coefficient (d 33*) ≈ 1890 picometers/volt]. Dislocation-based anisotropy delivers a different suite of tools with which to tailor functional materials.

11.
ACS Appl Mater Interfaces ; 13(4): 5895-5906, 2021 Feb 03.
Article En | MEDLINE | ID: mdl-33482058

Understanding the interfacial impedance between the solid electrolyte and the electrode is a critical issue for the design of solid-state batteries. We propose a new equivalent circuit model that treats the interface not only as a capacitor but also includes the space charge layer resistance and the resultant polarization resistance. Moreover, the elements of the circuit model are quantified by the physical quantities based on the recently proposed modified Planck-Nernst-Poisson (MPNP) model, which includes the effect of the unoccupied regular lattice sites (vacancies) in the electro-diffusion problem and takes both the ion and electron contributions into the account. We provide a new analytical solution for the space charge layer capacitance. Comparative numerical results demonstrate that our proposed model with additional polarization resistance can explain well the real impedance tail at the low-frequency region, for which the pure capacitor interface model fails. The model is verified against the experimental impedance spectra of LiPON.

12.
ACS Nano ; 14(9): 11309-11318, 2020 Sep 22.
Article En | MEDLINE | ID: mdl-32806050

Owing to their large surface area, continuous conduction paths, high activity, and pronounced anisotropy, nanowires are pivotal for a wide range of applications, yet far from thermodynamic equilibrium. Their susceptibility toward degradation necessitates an in-depth understanding of the underlying failure mechanisms to ensure reliable performance under operating conditions. In this study, we present an in-depth analysis of the thermally triggered Plateau-Rayleigh-like morphological instabilities of electrodeposited, polycrystalline, 20-40 nm thin platinum nanowires using in situ transmission electron microscopy in a controlled temperature regime, ranging from 25 to 1100 °C. Nanowire disintegration is heavily governed by defects, while the initially present, frequent but small thickness variations do not play an important role and are overridden later during reshaping. Changes of the exterior wire morphology are preceded by shifts in the internal nanostructure, including grain boundary straightening, grain growth, and the formation of faceted voids. Surprisingly, the nanowires segregate into two domain types, one being single-crystalline and essentially void-free, while the other preserves void-pinned grain boundaries. While the single-crystalline domains exhibit fast Pt transport, the void-containing domains are unexpectedly stable, accumulate platinum by surface diffusion, and act as nuclei for the subsequent nanowire splitting. This study highlights the vital role of defects in Plateau-Rayleigh-like thermal transformations, whose evolution not only accompanies but guides the wire reshaping. Thus, defects represent strong parameters for controlling the nanowire decay and must be considered for devising accurate models and simulations.

13.
Natl Sci Rev ; 7(6): 1046-1058, 2020 Jun.
Article En | MEDLINE | ID: mdl-34692124

Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g-1 at 1 C (1 C = 335 mA g-1) at a voltage window of 1.0-3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g-1, respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.

14.
Nat Commun ; 9(1): 4445, 2018 10 25.
Article En | MEDLINE | ID: mdl-30361549

Any dielectric material under a strain gradient presents flexoelectricity. Here, we synthesized 0.75 sodium bismuth titanate -0.25 strontium titanate (NBT-25ST) core-shell nanoparticles via a solid-state chemical reaction directly inside a transmission electron microscope (TEM) and observed domain-like nanoregions (DLNRs) up to an extreme temperature of 800 °C. We attribute this abnormal phenomenon to a chemically induced lattice strain gradient present in the core-shell nanoparticle. The strain gradient was generated by controlling the diffusion of strontium cations. By combining electrical biasing and temperature-dependent in situ TEM with phase field simulations, we analyzed the resulting strain gradient and local polarization distribution within a single nanoparticle. The analysis confirms that a local symmetry breaking, occurring due to a strain gradient (i.e. flexoelectricity), accounts for switchable polarization beyond the conventional temperature range of existing polar materials. We demonstrate that polar nanomaterials can be obtained through flexoelectricity at extreme temperature by tuning the cation diffusion.

15.
Sci Rep ; 8(1): 4597, 2018 Mar 15.
Article En | MEDLINE | ID: mdl-29545636

The present study is focused on tubular multi-channel arrays composed of commercial fluoropolymer (FEP) tubes with different wall thickness. After proper charging in a high electric field, such tubular structures exhibit a large piezoelectric [Formula: see text] coefficient significantly exceeding the values of classical polymer ferroelectrics and being even comparable to conventional lead-free piezoceramics. The quasistatic piezoelectric [Formula: see text] coefficient was theoretically derived and its upper limits were evaluated considering charging and mechanical properties of the arrays. In order to optimize the [Formula: see text] coefficient the remanent polarization and the mechanical properties were taken into account, both being strongly dependent on the air channel geometry as well as on the wall thickness of the FEP tubes. The model predictions are compared with experimental d33 coefficients for two particular arrays with equal air gaps of 250 µm, but with different wall thickness of utilized FEP tubes of 50 µm and 120 µm, respectively. Analytical modeling allows for the prediction that arrays made of FEP tubes with a wall thickness of 10 µm are foreseen to exhibit a superb piezoelectric response of up to 600 pC/N if the height of stadium-like shaped air channels is reduced down to 50 µm, making them potentially interesting for application as highly sensitive sensors and energy harvesting.

16.
Energy Technol (Weinh) ; 6(8): 1491-1511, 2018 Aug.
Article En | MEDLINE | ID: mdl-31032169

The occurrence of the inverse (or negative) electrocaloric effect, where the isothermal application of an electric field leads to an increase in entropy and the removal of the field decreases the entropy of the system under consideration, is discussed and analyzed. Inverse electrocaloric effects have been reported to occur in several cases, for example, at transitions between ferroelectric phases with different polarization directions, in materials with certain polar defect configurations, and in antiferroelectrics. This counterintuitive relationship between entropy and applied field is intriguing and thus of general scientific interest. The combined application of normal and inverse effects has also been suggested as a means to achieve larger temperature differences between hot and cold reservoirs in future cooling devices. A good general understanding and the possibility to engineer inverse caloric effects in terms of temperature spans, required fields, and operating temperatures are thus of fundamental as well as technological importance. Here, the known cases of inverse electrocaloric effects are reviewed, their physical origins are discussed, and the different cases are compared to identify common aspects as well as potential differences. In all cases the inverse electrocaloric effect is related to the presence of competing phases or states that are close in energy and can easily be transformed with the applied field.

17.
Sci Rep ; 6: 36910, 2016 11 14.
Article En | MEDLINE | ID: mdl-27841299

Lead-free relaxor ferroelectrics that feature a core-shell microstructure provide an excellent electromechanical response. They even have the potential to replace the environmentally hazardous lead-zirconia-titanate (PZT) in large strain actuation applications. Although the dielectric properties of core-shell ceramics have been extensively investigated, their piezoelectric properties are not yet well understood. To unravel the interfacial core-shell interaction, we studied the relaxation behaviour of field-induced ferroelectric domains in 0.75Bi1/2Na1/2TiO3-0.25SrTiO3 (BNT-25ST), as a typical core-shell bulk material, using a piezoresponse force microscope. We found that after poling, lateral domains emerged at the core-shell interface and propagated to the shell region. Phase field simulations showed that the increased electrical potential beneath the core is responsible for the in-plane domain evolution. Our results imply that the field-induced domains act as pivotal points at the coherent heterophase core-shell interface, reinforcing the phase transition in the non-polar shell and thus promoting the giant strain.

18.
Proc Math Phys Eng Sci ; 470(2171): 20140517, 2014 Nov 08.
Article En | MEDLINE | ID: mdl-25383036

A continuum constraint-free phase field model is proposed to simulate the magnetic domain evolution in ferromagnetic materials. The model takes the polar and azimuthal angles (ϑ1,ϑ2), instead of the magnetization unit vector m(m1,m2,m3), as the order parameters. In this way, the constraint on the magnetization magnitude can be exactly satisfied automatically, and no special numerical treatment on the phase field evolution is needed. The phase field model is developed from a thermodynamic framework which involves a configurational force system for ϑ1 and ϑ2. A combination of the configurational force balance and the second law of thermodynamics leads to thermodynamically consistent constitutive relations and a generalized evolution equation for the order parameters (ϑ1,ϑ2). Beneficial from the constraint-free model, the three-dimensional finite-element implementation is straightforward, and the degrees of freedom are reduced by one. The model is shown to be capable of reproducing the damping-dependent switching dynamics, and the formation and evolution of domains and vortices in ferromagnetic materials under the external magnetic or mechanical loading. Particularly, the calculated out-of-plane component of magnetization in a vortex is verified by the corresponding experimental results, as well as the motion of the vortex under a magnetic field.

...