Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Carbohydr Polym ; 346: 122633, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245501

RESUMEN

Bimetallic zeolitic imidazolate frameworks (BZIFs) have received enormous attention due to their unique physi-chemical properties, but are rarely reported for electrically conductive hydrogel (ECH) applications arising from low intrinsic conductivity and poor dispersion. Herein, we propose an innovative strategy to prepare highly conductive and mechanically robust ECHs by in situ growing Ni/Co-BZIFs within the polyvinyl alcohol/sodium alginate dual network (PZPS). 2-methylimidazole (MeIM) ligands copolymerize with pyrrole monomers, enhancing the electrical conductivity; meanwhile, MeIM ligands act as anchor points for in-situ formation of BZIFs, effectively avoiding phase-to-phase interfacial resistance and ensuring a uniform distribution in the hydrogel network. Due to the synergism of Ni/Co-BZIFs, the PZPS hydrogel exhibits a high areal capacitance of 630.3 mF·cm-2 at a current density of 0.5 mA·cm-2, promising for flexible energy storage devices. In addition, PZPS shows excellent mechanical strength and toughness (with an ultimate tensile strength of 405.0 kPa and a toughness of 784.2 kJ·m-3 at an elongation at break of 474.0 %), a high gauge factor of up to 4.18 over an extremely wide stress range of 0-42 kPa when used as flexible wearable strain/pressure sensors. This study provides new insights to incorporating highly conductive and uniformly dispersed ZIFs into hydrogels for flexible wearable electronics.

2.
Am J Cancer Res ; 14(8): 3773-3788, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267672

RESUMEN

Prostate cancer generally has a high long-term survival rate; however, metastatic prostate cancer remains largely incurable despite intensive multimodal therapy. Recent research has identified δ-catenin, a member of the catenin family, as playing a crucial role in the progression of prostate cancer. Nonetheless, the extent to which δ-catenin influences transcription factors associated with epithelial-mesenchymal transition (EMT) has not been thoroughly explored. This study aims to investigate the hypothesis that δ-catenin enhances the stability of Twist1, thereby promoting the migratory and invasive capabilities of prostate cancer cells. Clinical data indicate a strong correlation between δ-catenin and Twist1 expression levels. Western blot analysis confirmed that δ-catenin stabilizes Twist1 and induces ectopic expression. Additionally, δ-catenin was found to reduce Twist1 phosphorylation by inhibiting GSK-3ß activity. Immunoprecipitation analysis suggested that δ-catenin exerts its effect by competing with Twist1 for binding to ubiquitin (Ub). These results highlight the role of δ-catenin in the ubiquitination modification of Twist1, suggesting that the combined presence of δ-catenin and Twist1 could serve as a biomarker for tumor progression in prostate cancer.

3.
Int J Biol Macromol ; 280(Pt 1): 135701, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288864

RESUMEN

Wound healing is a complex process and reuires a long repair process. Poor healing effect is normally a challenge for wound healing. Designing sponge dressings with drug-assisted therapy, good breathability, and multiple functional structures effectively promotes wound healing. In this work, a flexible amoxicillin-laded (AMX) sodium alginate (SA)/cellulose nanocrystals (CNCs)/ polyvinyl alcoho (PVA) (SA/CNCs/PVA-AMX, SCP-AMX) wound dressing was designed and built with an excellent porous structure, suitable porosity, and anti-bacterial properties for promoting wound tissue reparation. The porous structure of the wound dressing was fabricated by freeze-thawing cyclic and freeze-dried molding process. This wound dressing exhibited a 3D porous structure for soft-tissue-engineering application, including high porosity (84.2%), swelling ratio (1513%), tensile strength (1.79 MPA), and flexibility. With the inhibition zones of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) being 1.96 and4.58 cm, respectively, this wound dressing demonstrated good antibacterial activity against E. coli and S. aureus. More importantly, wound healing assay in vivo indicates that SCP-AMX could inhibit wound infection, promote collagen deposition, reduce inflammation, and accelerate granulation tissue and wound healing. Thus, the reported wounding dressings present excellent biocompatibility, high antibacterial activities, and excellent biosafety with great potential in wound healing applications.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39316496

RESUMEN

Graph neural networks offer an effective avenue for predicting drug-target interactions. In this domain, researchers have found that constructing heterogeneous information networks based on metapaths using diverse biological datasets enhances prediction performance. However, the performance of such methods is closely tied to the selection of metapaths and the compatibility between metapath subgraphs and graph neural networks. Most existing approaches still rely on fixed strategies for selecting metapaths and often fail to fully exploit node information along the metapaths, limiting the improvement in model performance. This paper introduces a novel method for predicting drug-target interactions by optimizing metapaths in heterogeneous information networks. On one hand, the method formulates the metapath optimization problem as a Markov decision process, using the enhancement of downstream network performance as a reward signal. Through iterative training of a reinforcement learning agent, a high-quality set of metapaths is learned. On the other hand, to fully leverage node information along the metapaths, the paper constructs subgraphs based on nodes along the metapaths. Different depths of subgraphs are processed using different graph convolutional neural network. The proposed method is validated using standard heterogeneous biological benchmark datasets. Experimental results on standard datasets show significant advantages over traditional methods.

5.
Nano Lett ; 24(38): 12000-12009, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39259957

RESUMEN

Graphene aerogels hold huge promise for the development of high-performance pressure sensors for future human-machine interfaces due to their ordered microstructure and conductive network. However, their application is hindered by the limited strain sensing range caused by the intrinsic stiffness of the porous microstructure. Herein, an anisotropic cross-linked chitosan and reduced graphene oxide (CCS-rGO) aerogel metamaterial is realized by reconfiguring the microstructure from a honeycomb to a buckling structure at the dedicated cross-section plane. The reconfigured CCS-rGO aerogel shows directional hyperelasticity with extraordinary durability (no obvious structural damage after 20 000 cycles at a directional compressive strain of ≤0.7). The CCS-rGO aerogel pressure sensor exhibits an ultrahigh sensitivity of 121.45 kPa-1, an unprecedented sensing range, and robust mechanical and electrical performance. The aerogel sensors are demonstrated to monitor human motions, control robotic hands, and even integrate into a flexible keyboard to play music, which opens a wide application potential in future human-machine interfaces.

6.
Small ; : e2402938, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113331

RESUMEN

With the rapid development of electronic industry, it's pressing to develop multifunctional electromagnetic interference (EMI) shielding materials to ensure the stable operation of electronic devices. Herein, multilayered flexible PEG@PAN/MXene (Ti3C2Tx)/PVDF@SiO2 (PMF) composite film has been constructed from the level of microstructure design via coaxial electrospinning, coating spraying, and uniaxial electrospinning strategies. Benefiting from the effective encapsulation for PEG and high conductivity of MXene coating, PEG@PAN/MXene composite film with MXene coating loading density of 0.70 mg cm-2 exhibits high thermal energy storage density of 120.77 J g-1 and great EMI shielding performance (EMI SE of 34.409 dB and SSE of 49.086 dB cm3 g-1) in X-band (8-12 GHz). Therefore, this advanced composite film can not only help electronic devices prevent the influence of electromagnetic pollution in the X-band but also play an important role in electronic device thermal management. Additionally, the deposition of nano PVDF@SiO2 fibers (289 ± 128 nm) endowed the PMF composite film with great hydrophobic properties (water contact angle of 126.5°) to ensure the stable working of hydrophilic MXene coating, thereby breaks the limitation of humid application environments. The finding paves a new way for the development of novel multifunctional EMI shielding composite films for electronic devices.

7.
Langmuir ; 40(32): 16690-16712, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39078042

RESUMEN

All-solid-state sodium batteries (AS3B) emerged as a strong contender in the global electrochemical energy storage market as a replacement for current lithium-ion batteries (LIB) owing to their high abundance, low cost, high safety, high energy density, and long calendar life. Inorganic electrolytes (IEs) are highly preferred over the conventional liquid and solid polymer electrolytes for sodium-ion batteries (SIBs) due to their high ionic conductivity (∼10-2-10-4 S cm-1), wide potential window (∼5 V), and overall better battery performances. This review discusses the bird's eye view of the recent progress in inorganic electrolytes such as Na-ß"-alumina, NASICON, sulfides, antipervoskites, borohydride-type electrolytes, etc. for AS3Bs. Current state-of-the-art inorganic electrolytes in correlation with their ionic conduction mechanism present challenges and interfacial characteristics that have been critically reviewed in this review. The current challenges associated with the present battery configuration are overlooked, and also the chemical and electrochemical stabilities are emphasized. The substantial solution based on ongoing electrolyte development and promising modification strategies are also suggested.

8.
Adv Colloid Interface Sci ; 331: 103244, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959813

RESUMEN

Ionic liquids (ILs) play a crucial role in the design of novel materials. The ionic nature of ILs provides numerous advantages in drug delivery, acting as a green solvent or active ingredient to enhance the solubility, permeability, and binding efficiency of drugs. They could also function as a structuring agent in the development of nano/micro particles for drug delivery, including micelles, vesicles, gels, emulsion, and more. This review summarize the ILs and IL-based gel structures with their advanced drug delivery applications. The first part of review focuses on the role of ILs in drug formulation and the applications of ILs in drug delivery. The second part of review offers a comprehensive overview of recent drug delivery applications of IL-based gel. It aims to offer new perspectives and attract more attention to open up new avenues in the biomedical applications of ILs and IL-based gels.


Asunto(s)
Materiales Biocompatibles , Sistemas de Liberación de Medicamentos , Geles , Líquidos Iónicos , Líquidos Iónicos/química , Geles/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Humanos , Portadores de Fármacos/química , Animales
9.
Arch Pharm (Weinheim) ; 357(10): e2400137, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38963324

RESUMEN

In our previous study, we reported a series of N-(9,10-anthraquinone-2-carbonyl) amino acid derivatives as novel inhibitors of xanthine oxidase (XO). Recognizing the suboptimal drug-like properties associated with the anthraquinone moiety, we embarked on a nonanthraquinone medicinal chemistry exploration in the current investigation. Through systematic structure-activity relationship (SAR) studies, we identified a series of 4-(isopentyloxy)-3-nitrobenzamide derivatives exhibiting excellent in vitro potency against XO. The optimized compound, 4-isopentyloxy-N-(1H-pyrazol-3-yl)-3-nitrobenzamide (6k), demonstrated exceptional in vitro potency with an IC50 value of 0.13 µM. Compound 6k showed favorable drug-like characteristics with ligand efficiency (LE) and lipophilic ligand efficiency (LLE) values of 0.41 and 3.73, respectively. In comparison to the initial compound 1d, 6k exhibited a substantial 24-fold improvement in IC50, along with a 1.6-fold enhancement in LE and a 3.7-fold increase in LLE. Molecular modeling studies provided insights into the strong interactions of 6k with critical amino acid residues within the active site. Furthermore, in vivo hypouricemic investigations convincingly demonstrated that 6k significantly reduced serum uric acid levels in rats. The MTT results revealed that compound 6k is nontoxic to healthy cells. The gastric and intestinal stability assay demonstrated that compound 6k exhibits good stability in the gastric and intestinal environments. In conclusion, compound 6k emerges as a promising lead compound, showcasing both exceptional in vitro potency and favorable drug-like characteristics, thereby warranting further exploration.


Asunto(s)
Inhibidores Enzimáticos , Xantina Oxidasa , Xantina Oxidasa/antagonistas & inhibidores , Xantina Oxidasa/metabolismo , Relación Estructura-Actividad , Animales , Ratas , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Estructura Molecular , Masculino , Antraquinonas/farmacología , Antraquinonas/química , Antraquinonas/síntesis química , Humanos , Relación Dosis-Respuesta a Droga , Benzamidas/farmacología , Benzamidas/síntesis química , Benzamidas/química , Ratas Sprague-Dawley , Ácido Úrico/sangre , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular
10.
Small ; : e2404011, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864206

RESUMEN

While MXene is widely used as an electrode material for supercapacitor, the intrinsic limitation of stacking caused by the interlayer van der Waals forces has yet to be overcome. In this work, a strategy is proposed to fabricate a composite scaffold electrode (MCN) by intercalating MXene with highly nitrogen-doped carbon nanosheets (CN). The 2D structured CN, thermally converted and pickling from Zn-hexamine (Zn-HMT), serves as a spacer that effectively prevents the stacking of MXene and contributes to a hierarchically scaffolded structure, which is conducive to ion movement; meanwhile, the high nitrogen-doping of CN tunes the electronic structure of MCN to facilitate charge transfer and providing additional pseudocapacitance. As a result, the MCN50 composite electrode achieves a high specific capacitance of 418.4 F g-1 at 1 A g-1. The assembled symmetric supercapacitor delivers a corresponding power density of 1658.9 W kg-1 and an energy density of 30.8 Wh kg-1. The all-solid-state zinc ion supercapacitor demonstrates a superior energy density of 68.4 Wh kg-1 and a power density of 403.5 W kg-1 and shows a high capacitance retention of 93% after 8000 charge-discharge cycles. This study sheds a new light on the design and development of novel MXene-based composite electrodes for high performance all-solid-state zinc ion supercapacitor.

11.
World J Oncol ; 15(3): 482-491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38751703

RESUMEN

Background: Peripheral traditional immune cell disorder plays an important role in cancer onset and development. The causal relationships between leukocytes prior to cancer and the risk of digestive system cancer remain unknown. This study assesses the causal correlations between leukocytes and digestive system cancer risk in East Asians and Europeans. Methods: Summary-level data on leukocyte-related genetic variation were extracted from Biobank Japan (107,964 participants) and a recent large-scale meta-analysis (563,946 participants). Summary-level data for the cancers were obtained from Biobank Japan (212,978 individuals) and the FinnGen consortium (178,802 participants). Univariable and multivariable Mendelian randomization (MR) analyses were performed on East Asians and Europeans separately. Results: Univariable MR analysis demonstrated the significant association between circulating eosinophil counts and risk of colorectal cancer (CRC) in East Asians (odds ratio (OR) = 0.80, 95% confidence interval (CI): 0.69 - 0.92, P = 0.002) and a suggestive relationship in the European population (OR = 0.86, 95% CI: 0.77 - 0.97, P = 0.013). An inverse suggestive association was observed between levels of basophils and the risk of gastric cancer (GC) in East Asians (OR = 0.83, 95% CI: 0.72 - 0.97, P = 0.019). The multivariable MR analysis showed the independent causal effect of eosinophil count on CRC risk in East Asians (OR = 0.72, 95% CI: 0.57 - 0.92, P = 0.009) and Europeans (OR = 0.80, 95% CI: 0.70 - 0.92, P = 0.002). Circulating basophils served as the negative causal factor in GC risk in East Asians (OR = 0.80, 95% CI: 0.67 - 0.94, P = 0.007). Conclusions: Our MR analyses revealed a genetic causal relationship between reduced blood eosinophils and an increased CRC risk in both Europeans and East Asians. Furthermore, our results suggested a causal association between decreased basophils and an elevated GC risk specifically in East Asians.

12.
Nanomicro Lett ; 16(1): 195, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743205

RESUMEN

A lightweight flexible thermally stable composite is fabricated by combining silica nanofiber membranes (SNM) with MXene@c-MWCNT hybrid film. The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination; the MXene@c-MWCNTx:y films are prepared by vacuum filtration technology. In particular, the SNM and MXene@c-MWCNT6:4 as one unit layer (SMC1) are bonded together with 5 wt% polyvinyl alcohol (PVA) solution, which exhibits low thermal conductivity (0.066 W m-1 K-1) and good electromagnetic interference (EMI) shielding performance (average EMI SET, 37.8 dB). With the increase in functional unit layer, the overall thermal insulation performance of the whole composite film (SMCx) remains stable, and EMI shielding performance is greatly improved, especially for SMC3 with three unit layers, the average EMI SET is as high as 55.4 dB. In addition, the organic combination of rigid SNM and tough MXene@c-MWCNT6:4 makes SMCx exhibit good mechanical tensile strength. Importantly, SMCx exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment. Therefore, this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.

13.
EClinicalMedicine ; 71: 102490, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38813445

RESUMEN

Background: Urinary tract infections (UTI) affect approximately 250 million people annually worldwide. Patients often experience a cycle of antimicrobial treatment and recurrent UTI (rUTI) that is thought to be facilitated by a gut reservoir of uropathogenic Escherichia coli (UPEC). Methods: 125 patients with UTI caused by an antibiotic-resistant organism (ARO) were enrolled from July 2016 to May 2019 in a longitudinal, multi-center cohort study. Multivariate statistical models were used to assess the relationship between uropathogen colonization and recurrent UTI (rUTI), controlling for clinical characteristics. 644 stool samples and 895 UPEC isolates were interrogated for taxonomic composition, antimicrobial resistance genes, and phenotypic resistance. Cohort UTI gut microbiome profiles were compared against published healthy and UTI reference microbiomes, as well as assessed within-cohort for timepoint- and recurrence-specific differences. Findings: Risk of rUTI was not independently associated with clinical characteristics. The UTI gut microbiome was distinct from healthy reference microbiomes in both taxonomic composition and antimicrobial resistance gene (ARG) burden, with 11 differentially abundant taxa at the genus level. rUTI and non-rUTI gut microbiomes in the cohort did not generally differ, but gut microbiomes from urinary tract colonized patients were elevated in E. coli abundance 7-14 days post-antimicrobial treatment. Corresponding UPEC gut isolates from urinary tract colonizing lineages showed elevated phenotypic resistance against 11 of 23 tested drugs compared to non-colonizing lineages. Interpretation: The gut microbiome is implicated in UPEC urinary tract colonization during rUTI, serving as an ARG-enriched reservoir for UPEC. UPEC can asymptomatically colonize the gut and urinary tract, and post-antimicrobial blooms of gut E. coli among urinary tract colonized patients suggest that cross-habitat migration of UPEC is an important mechanism of rUTI. Thus, treatment duration and UPEC populations in both the urinary and gastrointestinal tract should be considered in treating rUTI and developing novel therapeutics. Funding: This work was supported in part by awards from the U.S. Centers for Disease Control and Prevention Epicenter Prevention Program (grant U54CK000482; principal investigator, V.J.F.); to J.H.K. from the Longer Life Foundation (an RGA/Washington University partnership), the National Center for Advancing Translational Sciences (grants KL2TR002346 and UL1TR002345), and the National Institute of Allergy and Infectious Diseases (NIAID) (grant K23A1137321) of the National Institutes of Health (NIH); and to G.D. from NIAID (grant R01AI123394) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (grant R01HD092414) of NIH. R.T.'s research was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation; grant 402733540). REDCap is Supported by Clinical and Translational Science Award (CTSA) Grant UL1 TR002345 and Siteman Comprehensive Cancer Center and NCI Cancer Center Support Grant P30 CA091842. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

14.
Opt Lett ; 49(8): 2197-2200, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621110

RESUMEN

An all-solid fiber-tip Fabry-Perot interferometer (FPI) coated with a nickel film is proposed and experimentally verified for magnetic field sensing with high sensitivity. It is fabricated by splicing a segment of a thin-wall capillary tube to a standard single-mode fiber (SMF), then inserting a tiny segment of fiber with a smaller diameter into the capillary tube, and creating an ultra-narrow air-gap at the SMF end to form an FPI. When the device is exposed to magnetic field, the capillary tube is strained due to the magnetostrictive effect of the nickel film coated on its outer surface. In addition, owing to the unique breakpoint sensitivity-enhancement structure of the air-gap FPI, the elongation of the capillary tube whose length is over 100 times longer than the air-gap width is entirely transferred to the cavity length change of the FPI, and the sensor is extremely sensitive to the magnetic field as proved by our experiments, achieving a high sensitivity of up to 2.236 nm/mT for a linear magnetic field range from 40 to 60 mT, as well as a low-temperature cross-sensitivity of 56 µT/°C. The all-solid stable structure, compact size (total length of ∼3.0 mm), and reflective working mode with high magnetic field sensitivity indicate that this sensor has good application prospects.

15.
Biosens Bioelectron ; 257: 116324, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669844

RESUMEN

Exploring efficient photoactive material presents an intriguing opportunity to enhance the analytical performance of photoelectrochemical (PEC) sensor in the environmental analysis. In this work, a sandwich-structured multi-interface Co9S8@ZnIn2S4/CdSe QDs dual Z-Scheme heterojunction, derived from metal-organic framework (MOF), was synthesized as a sensing platform for chlorpyrifos detection, by integrating with enzyme-induced in situ insoluble precipitates strategy. The meticulously designed Co9S8@ZnIn2S4/CdSe QDs exhibited enhanced charge separation efficiency and was proved to be a highly effective sensing platform for the immobilization of biomolecules, attributing to the intrinsic dual Z-Scheme heterojunction and the distinctive hollow structure. The proposed PEC sensing platform combined with enzyme-induced in situ precipitate signal amplification strategy achieved superior performance for sensing of chlorpyrifos (CPF), showing in wide linear range (1.0 pg mL-1-100 ng mL-1), with a limit of detection (0.6 pg mL-1), excellent selectivity, and stability. This work offers valuable insights for the design of novel advanced photoactive materials aimed at detecting environmental pollutants with low level concentration.


Asunto(s)
Técnicas Biosensibles , Cloropirifos , Técnicas Electroquímicas , Límite de Detección , Estructuras Metalorgánicas , Puntos Cuánticos , Cloropirifos/análisis , Estructuras Metalorgánicas/química , Técnicas Electroquímicas/métodos , Puntos Cuánticos/química , Compuestos de Cadmio/química , Compuestos de Selenio/química , Cobalto/química , Insecticidas/análisis
16.
Small ; 20(33): e2400849, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38644168

RESUMEN

Liquid organic hydrogen carrier is a promising option for the transport and storage of hydrogen as a clean energy source. This study examines the stability and behavior of organic drops immobilized on a substrate during an interfacial hydrogen-evolution reaction (HER) at the drop surface and its surrounding aqueous solution. Hydrogen microbubbles form within the drop and rise to the drop apex. The growth rate of the hydrogen in-drop bubble increases with the concentration of the reactant in the surrounding medium. The drop remains stable till the buoyancy acting on the in-drop bubble is large enough to overcome the capillary force and the external viscous drag. The bubble spontaneously rises and carries a portion drop liquid to the solution surface. These spontaneous rising in-drop bubbles are detected in measurements using a high-precision sensor placed on the upper surface of the aqueous solution, reversing the settling phase from phase separation in the reactive emulsion. The finding from this work provides new insights into the behaviors of drops and bubbles in many interfacial gas evolution reactions in clean technologies.

17.
J Sci Food Agric ; 104(12): 7182-7193, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38624038

RESUMEN

BACKGROUND: Grape peels, the main by-products of wine processing, are rich in bioactive ingredients of phenolics, including proanthocyanidins, flavonoids and anthocyanins. Phenolics have the function of regulating intestinal microbiota and promoting intestinal health. From the perspective of the dietary nutrition of grape peel phenolics (GPP), the present study aimed to investigate the influence of GPP on the composition and metabolism of human gut microbiota during in vitro fermentation. RESULTS: The results indicated that GPP could decrease pH and promote the production of short-chain fatty acids. ACE and Chao1 indices in GPP group were lower than that of the Blank group. GPP enhanced the levels of Lachnospiraceae UCG-004, Bacteroidetes and Roseburia, but reduced the Firmicutes/Bacteroidetes ratio. Kyoto Encyclopedia of Proteins and Genome enrichment pathways related to phenolic acid metabolism mainly included flavonoid, anthocyanin, flavone and flavonol biosynthesis. Gut microbiota could accelerate the release and breakdown of phenolic compounds, resulting in a decrease in the content of hesperetin-7-O-glucoside, delphinidin-3-O-glucoside and cyanidin-3-rutinoside etc. In vitro antibacterial test found that GPP increased the diameters of the inhibition zones of Escherichia coli and Staphylococcus aureus in a dose-dependent manner. CONCLUSION: The results of the present study revealed that GPP might be a potential prebiotic-like to prevent diseases by improving gut health. The findings could provide a theoretical basis for the potential to exploit GPP as dietary nutrition to maintain intestinal function. © 2024 Society of Chemical Industry.


Asunto(s)
Bacterias , Colon , Fermentación , Frutas , Microbioma Gastrointestinal , Fenoles , Vitis , Vitis/química , Vitis/metabolismo , Humanos , Fenoles/metabolismo , Frutas/química , Frutas/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Colon/microbiología , Colon/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/efectos de los fármacos , Antocianinas/metabolismo , Ácidos Grasos Volátiles/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/química , Escherichia coli/metabolismo , Flavonoides/metabolismo
18.
Dev Cell ; 59(9): 1146-1158.e6, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38574734

RESUMEN

Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.


Asunto(s)
Implantación del Embrión , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción AP-2 , Factores de Transcripción , Animales , Femenino , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Implantación del Embrión/genética , Desarrollo Embrionario/genética , Redes Reguladoras de Genes , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción de Dominio TEA/metabolismo , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción AP-2/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Tretinoina/metabolismo
19.
Talanta ; 274: 126034, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604040

RESUMEN

As an important prognostic indicator in breast cancer, human epithelial growth factor receptor-2 (HER-2) is of importance for assessing prognosis of breast cancer patients, whose accurate and facile analysis are imperative in clinical diagnosis and treatment. Herein, photoactive Z-scheme UiO-66/CdIn2S4 heterojunction was constructed by a hydrothermal method, whose optical property and photoactivity were critically investigated by a range of techniques, combined by elucidating the interfacial charge transfer mechanism. Meanwhile, PtPdCu nanoflowers (NFs) were fabricated by a simple aqueous wet-chemical method, whose peroxidase (POD)-mimicking catalytic activity was scrutinized by representative tetramethylbenzidine (TMB) oxidation in H2O2 system. Taken together, the UiO-66/CdIn2S4 based photoelectrochemical (PEC) aptasensor was established for quantitative analysis of HER-2, where the detection signals were further magnified through catalytic precipitation reaction towards 4-chloro-1-naphthol (4-CN) oxidation (assisted by the PtPdCu NFs nanozyme). The PEC aptasensor presented a broader linear range within 0.1 pg mL-1-0.1 µg mL-1 and a lower limit of detection of 0.07 pg mL-1. This work developed a new PEC aptasensor for ultrasensitive determination of HER-2, holding substantial promise for clinical diagnostics.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Cobre , Técnicas Electroquímicas , Platino (Metal) , Receptor ErbB-2 , Receptor ErbB-2/análisis , Humanos , Técnicas Electroquímicas/métodos , Cobre/química , Platino (Metal)/química , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Límite de Detección , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/análisis , Estructuras Metalorgánicas/química , Nanoestructuras/química , Níquel/química , Bencidinas/química , Procesos Fotoquímicos , Catálisis
20.
Cell Rep Med ; 5(5): 101515, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38631348

RESUMEN

During pregnancy, germline development is vital for maintaining the continuation of species. Recent studies have shown increased pregnancy risks in COVID-19 patients at the perinatal stage. However, the potential consequence of infection for reproductive quality in developing fetuses remains unclear. Here, we analyze the transcriptome and DNA methylome of the fetal germline following maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We find that infection at early gestational age, a critical period of human primordial germ cell specification and epigenetic reprogramming, trivially affects fetal germ cell (FGC) development. Additionally, FGC-niche communications are not compromised by maternal infection. Strikingly, both general and SARS-CoV-2-specific immune pathways are greatly activated in gonadal niche cells to protect FGCs from maternal infection. Notably, there occurs an "in advance" development tendency in FGCs after maternal infection. Our study provides insights into the impacts of maternal SARS-CoV-2 infection on fetal germline development and serves as potential clinical guidance for future pandemics.


Asunto(s)
COVID-19 , Feto , Células Germinativas , SARS-CoV-2 , Humanos , Femenino , COVID-19/virología , COVID-19/inmunología , COVID-19/patología , Embarazo , Células Germinativas/virología , Feto/virología , Complicaciones Infecciosas del Embarazo/virología , Complicaciones Infecciosas del Embarazo/patología , Gónadas/virología , Transcriptoma/genética , Masculino , Metilación de ADN/genética , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA