Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 18(2): 101348, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697356

RESUMEN

BACKGROUND & AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a dynamic chronic liver disease closely related to metabolic abnormalities such as diabetes and obesity. MASLD can further progress to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). However, the mechanisms underlying the progression of MASLD and further progression to liver fibrosis and liver cancer are unknown. METHODS: In this study, we performed transcriptome analysis in livers from mice with MASLD and found suppression of a potential anti-oncogene, RAS association domain protein 4 (RASSF4). RASSF4 expression levels were measured in liver or tumor tissues of patients with MASH or HCC, respectively. We established RASSF4 overexpression and knockout mouse models. The effects of RASSF4 were evaluated by quantitative polymerase chain reaction, Western blotting, histopathological analysis, wound healing assays, Transwell assays, EdU incorporation assays, colony formation assays, sorafenib sensitivity assays, and tumorigenesis assays. RESULTS: RASSF4 was significantly down-regulated in MASH and HCC samples. Using liver-specific RASSF4 knockout mice, we demonstrated that loss of hepatic RASSF4 exacerbated hepatic steatosis and fibrosis. In contrast, RASSF4 overexpression prevented steatosis in MASLD mice. In addition, RASSF4 in hepatocytes suppressed the activation of hepatic stellate cells (HSCs) by reducing transforming growth factor beta secretion. Moreover, we found that RASSF4 is an independent prognostic factor for HCC. Mechanistically, we found that RASSF4 in the liver interacts with MST1 to inhibit YAP nuclear translocation through the Hippo pathway. CONCLUSIONS: These findings establish RASSF4 as a therapeutic target for MASLD and HCC.

2.
J Am Chem Soc ; 146(17): 11845-11854, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648548

RESUMEN

Organic molecules have been regarded as ideal candidates for near-infrared (NIR) optoelectronic active materials due to their customizability and ease of large-scale production. However, constrained by the intricate molecular design and severe energy gap law, the realization of optoelectronic devices in the second near-infrared (NIR (II)) region with required narrow band gaps presents more challenges. Herein, we have originally proposed a cocrystal strategy that utilizes intermolecular charge-transfer interaction to drive the redshift of absorption and emission spectra of a series BFXTQ (X = 0, 1, 2, 4) cocrystals, resulting in the spectra located at NIR (II) window and reducing the optical bandgap to ∼0.98 eV. Significantly, these BFXTQ-based optoelectronic devices can exhibit dual-mode optoelectronic characteristics. An investigation of a series of BFXTQ-based photodetectors exhibits detectivity (D*) surpassing 1013 Jones at 375 to 1064 nm with a maximum of 1.76 × 1014 Jones at 1064 nm. Moreover, the radiative transition of CT excitons within the cocrystals triggers NIR emission over 1000 nm with a photoluminescence quantum yield (PLQY) of ∼4.6% as well as optical waveguide behavior with a low optical-loss coefficient of 0.0097 dB/µm at 950 nm. These results promote the advancement of an emerging cocrystal approach in micro/nanoscale NIR multifunctional optoelectronics.

3.
Exp Gerontol ; 188: 112391, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437929

RESUMEN

Diabetic retinopathy (DR) is the most common ocular fundus disease in diabetic patients. Chronic hyperglycemia not only promotes the development of diabetes and its complications, but also aggravates the occurrence of senescence. Previous studies have shown that DR is associated with senescence, but the specific mechanism has not been fully elucidated. Here, we first detected the differentially expressed genes (DEGs) and cellular senescence level of db/db mouse retinas by bulk RNA sequencing. Then, we used single-cell sequencing (scRNA-seq) to identify the main cell types in the retina and analyzed the DEGs in each cluster. We demonstrated that p53 expression was significantly increased in retinal endothelial cell cluster of db/db mice. Inhibition of p53 can reduce the expression of SA-ß-Gal and the senescence-associated secretory phenotype (SASP) in HRMECs. Finally, we found that p53 can promote FoxO3a ubiquitination and degradation by increasing the expression of the ubiquitin-conjugating enzyme UBE2L6. Overall, our results demonstrate that p53 can accelerate the senescence process of endothelial cells and aggravate the development of DR. These data reveal new targets and insights that may be used to treat DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Animales , Humanos , Ratones , Senescencia Celular/genética , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Retina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
4.
Nat Chem ; 16(2): 201-209, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38036642

RESUMEN

Two-dimensional organic lateral heterostructures (2D OLHs) are attractive for the fabrication of functional materials. However, it is difficult to control the nucleation, growth and orientation of two distinct components. Here we report the combination of two methods-liquid-phase growth and vapour-phase growth-to synthesize 2D OLHs from perylene and a perylenecarboxaldehyde derivative, with a lateral size of ~20 µm and a tunable thickness ranging from 20 to 400 nm. The screw dislocation growth behaviour of the 2D crystals shows the spiral arrangement of atoms within the crystal lattice, which avoids volume expansion and contraction of OLH, thereby minimizing lateral connection defects. Selective control of the nucleation and sequential growth of 2D crystals leads to structural inversion of the 2D OLHs by the vapour-phase growth method. The resulting OLHs show good light-transport capabilities and tunable spatial exciton conversion, useful for photonic applications. This synthetic strategy can be extended to other families of organic polycyclic aromatic hydrocarbons, as demonstrated with other pyrene and perylene derivatives.

5.
J Am Chem Soc ; 145(16): 9285-9291, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37040147

RESUMEN

Organic hierarchical branch micro/nanostructures constituted by single crystals with inherent multichannel characteristics exhibit superior potential in regulating photon transmission for photonic circuits. However, organic branch micro/nanostructures with precise branch positions are extremely difficult to achieve due to the randomness of the nucleation process. Herein, by taking advantage of the dislocation stress field-impurity interaction that solute molecules deposit preferentially along the dislocation line, twinning deformation was introduced into microcrystals to induce oriented nucleation sites, and ultimately organic branch microstructures with controllable branch sites were fabricated. The growth mechanism of these controllable single crystals with an angle of 140° between trunk and branch is attributed to the low lattice mismatching ratio (η) of 4.8%. These as-prepared hierarchical branch single crystals with asymmetrical optical waveguide characteristics have been demonstrated as an optical logic gate with multiple input/out channels, which provides a route to command the nucleation sites and offers potential applications in the organic optoelectronics at the micro/nanoscale.

6.
J Phys Chem Lett ; 14(12): 3047-3056, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36946651

RESUMEN

Organic charge transfer (CT) cocrystals open a new door for the exploitation of low-dimensional near-infrared (NIR) emitters by a convenient self-assembly approach. However, research about the fabrication of sheet-like NIR-emitting microstructures that are significant for structural construction and integrated application is limited by the unidirectional molecular packing mode. Herein, via regulation of the biaxial intermolecular CT interaction, single-crystalline microsheets with remarkable NIR emission from 720 to 960 nm were synthesized via the solution self-assembly process of dithieno[3,2-b:2',3'-d]thiophene and 7,7,8,8-tetracyanoquinodimethane. The expected sheet-like structure is conducive to achieving a two-dimensional (2D) optical waveguide with an ultralow optical loss rate of 0.250 dB/µm at 860 nm. More significantly, these as-prepared organic microsheets with tunable thicknesses (h) from 100 to 1100 nm exhibit thickness-dependent NIR optical transportation performance. These findings could pave the way to a new class of low-dimensional NIR emitters for 2D photonics at telecom wavelengths.

7.
Free Radic Biol Med ; 199: 154-165, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36828294

RESUMEN

High fructose intake is an essential risk factor for kidney injury. However, the specific mechanism underlying high fructose-induced kidney injury remains unclarified. Carbohydrate response element-binding protein (ChREBP) is a key transcriptional activator that regulates fructose metabolism. ChREBP-ß exhibits sustained activity due to the lack of a low glucose inhibitory domain, and is thus described as the active form of ChREBP. In this study, a mouse model with specific overexpression of ChREBP-ß in the renal tubule was established by using the Cre/LoxP method. Quantitative proteomic analysis and experimental verification results suggest that ChREP-ß overexpression leads to ferroptosis of renal tubular epithelial cells and kidney injury. ChREPB-ß promotes the gene transcription of thioredoxin-interacting protein (TXNIP) and thereby increases its expression level. TXNIP is associated with activation of ferroptosis. TXNIP can initiate ferroptosis and eventually contribute to high fructose-induced renal tubular epithelial cell damage. Through down-regulating ChREBP-ß, metformin can inhibit gene transcription of TXNIP, attenuate high fructose-induced ferroptosis in renal tubular epithelial cells, and alleviate kidney injury. In conclusion, ChREBP-ß mediates fructose-induced ferroptosis of renal tubular epithelial cells, and metformin with a ChREBP-ß inhibitory effect may be a potential treatment for ferroptosis of renal tubular epithelial cells.


Asunto(s)
Ferroptosis , Metformina , Ratones , Animales , Ferroptosis/genética , Proteómica , Glucosa/metabolismo , Células Epiteliales/metabolismo , Metformina/farmacología , Túbulos Renales/metabolismo , Fructosa , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Portadoras/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
8.
Front Endocrinol (Lausanne) ; 13: 1072955, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568118

RESUMEN

Background: Obesity is a complex condition that influences several organ systems and physiologic systems. Obesity (OB) is closely linked to Alzheimer's disease (AD). However, the interrelationship between them remains unclear. The purpose of this study is to explore the key genes and potential molecular mechanisms in obesity and AD. Methods: The microarray data for OB and AD were downloaded from the Gene Expression Omnibus (GEO) database. Weighted gene correlation network analysis (WGCNA) was used to delineate the co-expression modules related to OB and AD. The shared genes existing in obesity and AD were identified through biological process analyses using the DAVID website, which then constructed the Protein-Protein Interaction (PPI) Network and selected the hub genes by Cytoscape. The results were validated in other microarray data by differential gene analysis. Moreover, the hub gene expressions were further determined in mice by qPCR. Results: The WGCNA identifies five modules and four modules as significant modules with OB and AD, respectively. Functional analysis of shared genes emphasized that inflammation response and mitochondrial functionality were common features in the pathophysiology of OB and AD. The results of differential gene analysis in other microarray data were extremely similar to them. Then six important hub genes were selected and identified using cytoHubba, including MMP9, PECAM1, C3AR1, IL1R1, PPARGC1α, and COQ3. Finally, we validated the hub gene expressions via qPCR. Conclusions: Our work revealed the high inflammation/immune response and mitochondrial impairment in OB patients, which might be a crucial susceptibility factor for AD. Meanwhile, we identified novel gene candidates such as MMP9, PECAM1, C3AR1, IL1R1, PPARGC1α, and COQ3 that could be used as biomarkers or potential therapeutic targets for OB with AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Metaloproteinasa 9 de la Matriz , Transcriptoma , Inflamación/genética , Obesidad/genética
9.
Front Physiol ; 12: 745058, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777009

RESUMEN

Background: White adipose tissue (WAT) browning is a promising target for obesity prevention and treatment. Empagliflozin has emerged as an agent with weight-loss potential in clinical and in vivo studies, but the mechanisms underlying its effect are not fully understood. Here, we investigated whether empagliflozin could induce WAT browning and mitochondrial alterations in KK Cg-Ay/J (KKAy) mice, and explored the mechanisms of its effects. Methods: Eight-week-old male KKAy mice were administered empagliflozin or saline for 8 weeks and compared with control C57BL/6J mice. Mature 3T3-L1 adipocytes were treated in the presence or absence of empagliflozin. Mitochondrial biosynthesis, dynamics, and function were evaluated by gene expression analyses, fluorescence microscopy, and enzymatic assays. The roles of adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-γ coactivator-1-alpha (PGC-1α) were determined through AICAR (5-Aminoimidazole-4-carboxamide1-ß-D-ribofuranoside)/Compound C and RNA interference, respectively. Results: Empagliflozin substantially reduced the bodyweight of KKAy mice. Mice treated with empagliflozin exhibited elevated cold-induced thermogenesis and higher expression levels of uncoupling protein 1 (UCP1) and other brown adipose tissue signature proteins in epididymal and perirenal WAT, which was an indication of browning in these WAT depots. At the same time, empagliflozin enhanced fusion protein mitofusin 2 (MFN2) expression, while decreasing the levels of the fission marker phosphorylated dynamin-related protein 1 (Ser616) [p-DRP1 (Ser616)] in epididymal and perirenal WAT. Empagliflozin also increased mitochondrial biogenesis and fusion, improved mitochondrial integrity and function, and promoted browning of 3T3-L1 adipocytes. Further, we found that AMPK signaling activity played an indispensable role in empagliflozin-induced browning and mitochondrial biogenesis, and that PGC-1α was required for empagliflozin-induced fusion. Whether empagliflozin activates AMPK by inhibition of SGLT2 or by independent mechanisms remains to be tested. Conclusion: Our results suggest that empagliflozin is a promising anti-obesity treatment, which can immediately induce WAT browning mitochondrial biogenesis, and regulate mitochondrial dynamics.

10.
Cell Death Dis ; 12(12): 1107, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836936

RESUMEN

The altered homeostasis of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) was closely associated with the pathological process of nervous system diseases and insulin resistance. Here, the exact implication of phosphofurin acidic cluster sorting protein 2 (PCAS-2), an anchor protein in the MAM interface, in diabetic kidney disease was investigated. In the kidneys of type 1 and type 2 diabetes mice and HG-induced HK-2 cells, a notable disruption of ER-mitochondria interactions, accompanied by a decreased PACS-2 expression in all subcellular fractions. Furthermore, PACS-2 knockout mice with diabetes displayed accelerated development of proteinuria, deterioration of kidney function, and aggravated disruption of MAM area, ER stress, mitochondrial dysfunction, renal apoptosis, and fibrosis. However, overexpression of PACS-2 effectively protected diabetic kidneys and HG-treated HK-2 cells from renal tubular impairments. Importantly, experimental uncoupling of ER-mitochondria contacts reversed the protective effects of PACS-2 restoration on HK-2 cells under HG conditions. In summary, our data indicate a pivotal role of PACS-2 in the development of diabetic renal tubular injury via the stabilization of MAM.


Asunto(s)
Nefropatías Diabéticas/genética , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte Vesicular/efectos adversos , Animales , Humanos , Masculino , Ratones
11.
Ann Transl Med ; 9(12): 1021, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34277821

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and the main cause of non-traumatic blindness in adults. Pericyte loss is known to be an early pathological change of DR. Our group's previous research indicated that prostaglandin F2α (PGF2α) acts as an eicosanoidal protector against non-proliferative DR that can regulate the mobility of pericytes in a RhoA-mediated manner. However, the effect of PGF2α on pericyte apoptosis has yet to be described. METHODS: Two animal models were constructed: a high-fat diet (HFD) and streptozotocin (STZ)-induced type 2 diabetes mouse model and a spontaneous type 2 diabetes db/db mouse model. We analyzed pathological changes, and performed TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) staining and western blot to detect apoptosis in the retinas of diabetic mice. For our in vitro experiments, we selected human retinal pericytes and subjected them to high-glucose (HG), PGF2α, and AL8810 (an antagonist of the PGF2α receptor) treatment. Subsequently, apoptosis and the levels of PI3K/Akt/GSK3ß/ß-catenin pathway-related proteins were detected by TUNEL staining and western blot, respectively. RESULTS: The levels of apoptosis were increased in the retinas of diabetic mice in both T2DM models. In vitro, HG treatment increased apoptosis and inhibited PI3K/Akt/GSK3ß/ß-catenin signaling in pericytes. In contrast, PGF2α treatment inhibited pericyte apoptosis while increasing the levels of the PI3K, p-Akt/t-Akt, p-GSK3ß/t-GSK3ß, and ß-catenin proteins; however, these PGF2α-induced effects were eliminated by ALL80. CONCLUSIONS: PGF2α may make a key contribution to reducing pericyte apoptosis and protecting against DR via its inhibition of the PI3K/Akt/GSK3ß/ß-catenin signaling pathway.

12.
Front Physiol ; 11: 1074, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013461

RESUMEN

Growth arrest and DNA damage-inducible beta (GADD45B) is closely linked with cell cycle arrest, DNA repair, cell survival, or apoptosis in response to stress and is known to regulate the mitogen-activated protein kinase (MAPK) pathway. Here, using an RNA sequencing approach, we determined that GADD45B was significantly upregulated in diabetic kidneys, which was accompanied by renal tubular epithelial-mesenchymal transition (EMT) and apoptosis, as well as elevated MAPK pathway activation. In vitro, GADD45B expression in cultured human kidney proximal tubular epithelial cells (HK-2 cells) was also stimulated by high glucose (HG). In addition, overexpression of GADD45B in HK-2 cells exacerbated renal tubular EMT and apoptosis and increased p38 MAPK and c-Jun N-terminal kinases (JNK) activation, whereas knockdown of GADD45B reversed these changes. Notably, the activity of extracellular regulated kinase (ERK) was not affected by GADD45B expression. Furthermore, inhibitors of p38 MAPK (SB203580) and JNK (SP600125) alleviated HG- and GADD45B overexpression-induced renal tubular epithelial-mesenchymal transition and apoptosis. These findings indicate a role of GADD45B in diabetes-induced renal tubular EMT and apoptosis via the p38 MAPK and JNK pathways, which may be an important mechanism of diabetic kidney injury.

13.
Free Radic Biol Med ; 160: 447-457, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32853721

RESUMEN

Impaired angiogenesis is crucial for impeding the wound healing process in diabetic foot ulcers (DFUs). In this study, we found that Angelica dahurica (A. dahurica) stimulated angiogenesis and benefited wound healing in genetic mouse models of diabetes. In HUVECs, A. dahurica promoted cell proliferation and tube formation, which was accompanied by increased nuclear translocation of HIF-1α under hypoxic conditions and led to elevated PDGF-ß protein expression. A. dahurica activated the PI3K/AKT signaling pathway in human umbilical vein endothelial cells (HUVECs), which was abrogated by the PI3K inhibitor LY294002. Furthermore, the cellular expression of PDGF-ß decreased significantly after treatment with a HIF-1α-siRNA, and PDGF-ß expression was increased in HIF-1α-overexpressing cells. In a full-thickness cutaneous wound healing db/db mouse model, A. dahurica accelerated wound closure, which was reflected by a significantly reduced wound area and an increase in neovascularization, as well as by elevated PDGF-ß expression and increased capillary formation. In addition, A. dahurica activated the PI3K/AKT signaling pathway and enhanced HIF-1α synthesis in wounds. In summary, A. dahurica promoted angiogenesis of HUVECs in vitro by promoting signaling via the HIF-1α/PDGF-ß pathway, efficiently enhancing vascularization in regenerated tissue and facilitating wound healing in vivo. The results revealed that A. dahurica has potential as a therapy for vessel injury-related wounds.


Asunto(s)
Angelica , Angelica/metabolismo , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Neovascularización Fisiológica , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Cicatrización de Heridas
14.
Metabolism ; 111: 154334, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32777444

RESUMEN

BACKGROUND AND PURPOSE: Excessive mitochondrial fission was observed in diabetic kidney disease (DKD). Phosphoglycerate mutase family member 5 (PGAM5) plays an important role in mitochondrial fission by dephosphorylating the dynamin-related protein 1 at Ser637 (DRP1S637). Whether PGAM5 participates in the mitochondrial fission in diabetic renal tubular injury is unknown. Clinical trials have observed encouraging effect of Sodium-glucose cotransporter 2 (SGLT2) inhibitors on DKD though the underling mechanisms remain unclear. EXPERIMENTAL APPROACH: We used KK-Ay mice as diabetic model and Empagliflozin (Empa) were administrated by oral gavage. The mitochondrial fission and the expressions of phosphorylated AMP-activated protein kinase (p-AMPK), specificityprotein1 (SP1), PGAM5 and DRP1S637 were tested. We also examined these changes in HK2 cells that cultured in normal glucose (NG), high glucose (HG) and high glucose+Empa (HG + Empa) environment. Then we verified our deduction using AMPK activator (5-aminoimidazole-4-carboximide Riboside, AICAR), inhibitor (Compound C), si-SP1 and si-PGAM5. Lastly, we testified the interaction between SP1 and the PGAM5promotor by CHIP assay. KEY RESULTS: The mitochondrial fission and the expression of SP1, PGAM5 increased and the expression of p-AMPK, DRP1S637 decreased in diabetic or HG environment. These changes were all reversed in Empa or AICAR treated groups. These reversal effects of Empa could be diminished by Compound C. Either si-SP1 or si-PGAM5 could alleviate the mitochondrial fission without affection on AMPK phosphorylation. Finally, the CHIP assay confirmed the interaction between SP1 and the PGAM5 promotor. CONCLUSIONS AND IMPLICATIONS: The PGAM5 aggravated the development of diabetic renal tubular injury and the Empa could improve the DKD by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Compuestos de Bencidrilo/farmacología , Nefropatías Diabéticas/tratamiento farmacológico , Glucósidos/farmacología , Túbulos Renales/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Transportador 2 de Sodio-Glucosa/metabolismo , Factor de Transcripción Sp1/metabolismo , Animales , Línea Celular , Nefropatías Diabéticas/metabolismo , Humanos , Túbulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
15.
J Phys Chem B ; 118(48): 13954-62, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25361071

RESUMEN

LiF-ThF4 molten salt (MS) is the fuel for advanced MS reactors. Knowledge of the microscopic MS structure and dynamics is required for an understanding of the macroscopic physical and chemical properties of the MS phases. We have performed molecular dynamics simulations on LiF-ThF4 MS at different molar percentages (LiF/ThF4 = 20.0 to 0.5) and temperatures (1100 to 1400 K). Experimental deductions and recent theoretical results on the coordination structures and transport properties of the MS are well reproduced. The density of states of the [ThF8](4-) species and the character of the Th-F bonding are investigated. The interplay between the microscopic structures and the dynamical properties is elucidated. Corresponding to the smaller effective radius of Zr, the activation barrier of the M(4+)-F(-) dissociation and the lifetime of the first coordination shell of M(4+) are both smaller for M = Th than for M = Zr in the respective LiF-MF4 systems. The shorter Zr-F bond is stronger than the longer Th-F bond, while the coordination number of the predominant [ZrF7](3-) species is smaller than that of the dominant [ThF8](4-) species. An approximate formula is proposed for the lifetime of F(-) ions in the first solvation shell of molten MFn (M = Y, Zr, Th) in terms of the radial distribution function.

16.
Inorg Chem ; 52(17): 9867-74, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23957772

RESUMEN

The tetraoxo pertechnetate anion (TcO4(-)) is of great interest for nuclear waste management and radiopharmceuticals. To elucidate its electronic structure and to compare with that of its lighter congener MnO4(-), the photoelectron and electronic absorption spectra of MnO4(-) and TcO4(-) are investigated with density functional theory (DFT) and ab initio wave function theory (WFT). The vertical electron detachment energies (VDEs) of MnO4(-) obtained with the CR-EOM-CCSD(T) method are in good agreement with the lowest two experimental VDEs; the differences are less than 0.1 eV, representing a significant improvement over the IP-EOM-CCSD(T) result in the literature. Combining our CCSD(T) and CR-EOM-CCSD(T) results, the first five VDEs of TcO4(-) are estimated between 5 and 10 eV with an estimated accuracy of about ±0.2 eV. The vertical excitation energies are determined by using TD-DFT, CR-EOM-CCSD(T), and RAS-PT2 methods. The excitation energies and the assignments of the spectra are analyzed and partly improved. They are compared with reported SAC-CI results and available experimental data. Both dynamic and nondynamic electron correlations are important in the ground and excited states of MnO4(-) and TcO4(-). Nondynamical correlations are particularly relevant in TcO4(-) for reliable prediction of excitation energies. In TcO4(-) one Rydberg state interlaces but does not mix with the valence excited states, and it disappears in the condensed phase.

17.
Chem Asian J ; 8(10): 2489-96, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23853153

RESUMEN

We report a combined photoelectron spectroscopic and relativistic quantum chemistry study on gaseous UCl5(-) and UCl5. The UCl5(-) anion is produced using electrospray ionization and found to be highly electronically stable with an adiabatic electron binding energy of 4.76±0.03 eV, which also represents the electron affinity of the neutral UCl5 molecule. Theoretical investigations reveal that the ground state of UCl5(-) has an open shell with two unpaired electrons occupying two primarily U 5f(z³) and 5f(xyz) based molecular orbitals. The structures of both UCl5(-) and UCl5 are theoretically optimized and confirmed to have C(4v) symmetry. The computational results are in good agreement with the photoelectron spectra, providing insights into the electronic structures and valence molecular orbitals of UCl5(-) and UCl5. We also performed systematic theoretical studies on all the uranium pentahalide complexes UX5(-) (X=F, Cl, Br, I). Chemical bonding analyses indicate that the U-X interactions in UX5(-) are dominated by ionic bonding, with increasing covalent contributions for the heavier halogen complexes.

18.
Inorg Chem ; 52(11): 6617-26, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23662677

RESUMEN

While uranyl halide complexes [UO2(halogen)n](2-n) (n = 1, 2, 4) are ubiquitous, the tricoordinate species have been relatively unknown until very recently. Here photoelectron spectroscopy and relativistic quantum chemistry are used to investigate the bonding and stability of a series of gaseous tricoordinate uranyl complexes, UO2X3(-) (X = F, Cl, Br, I). Isolated UO2X3(-) ions are produced by electrospray ionization and observed to be highly stable with very large adiabatic electron detachment energies: 6.25, 6.64, 6.27, and 5.60 eV for X = F, Cl, Br, and I, respectively. Theoretical calculations reveal that the frontier molecular orbitals are mainly of uranyl U-O bonding character in UO2F3(-), but they are from the ligand valence np lone pairs in the heavier halogen complexes. Extensive bonding analyses are carried out for UO2X3(-) as well as for the doubly charged tetracoordinate complexes (UO2X4(2-)), showing that the U-X bonds are dominated by ionic interactions with weak covalency. The U-X bond strength decreases down the periodic table from F to I. Coulomb barriers and dissociation energies of UO2X4(2-) → UO2X3(-) + X(-) are calculated, revealing that all gaseous dianions are in fact metastable. The dielectric constant of the environment is shown to be the key in controlling the thermodynamic and kinetic stabilities of the tetracoordinate uranyl complexes via modulation of the ligand-ligand Coulomb repulsions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...