Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Planta ; 255(6): 111, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35478059

RESUMEN

MAIN CONCLUSION: Overexpression of JcSEP3 causes defective stamen development in Jatropha curcas, in which brassinosteroid and gibberellin signaling pathways may be involved. SEPALLATAs (SEPs), the class E genes of the ABCE model, are required for floral organ determination. In this study, we investigated the role of the JcSEP3 gene in floral organ development in the woody plant Jatropha curcas. Transgenic Jatropha plants overexpressing JcSEP3 displayed abnormal phenotypes such as deficient anthers and pollen, as well as free stamen filaments, whereas JcSEP3-RNA interference (RNAi) transgenic plants had no obvious phenotypic changes, suggesting that JcSEP3 is redundant with other JcSEP genes in Jatropha. Moreover, we compared the transcriptomes of wild-type plants, JcSEP3-overexpressing, and JcSEP3-RNAi transgenic plants. In the JcSEP3-overexpressing transgenic plants, we discovered 25 upregulated genes involved in anther and pollen development, as well as 12 induced genes in brassinosteroid (BR) and gibberellin (GA) signaling pathways. These results suggest that JcSEP3 directly or indirectly regulates stamen development, concomitant with the regulation of BR and GA signaling pathways. Our findings help to understand the roles of SEP genes in stamen development in perennial woody plants.


Asunto(s)
Jatropha , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Jatropha/genética , Jatropha/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
2.
Plants (Basel) ; 10(4)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916393

RESUMEN

Diacylglycerol acyltransferase (DGAT) is the only enzyme that catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol (DAG) to form triacylglycerol (TAG). The two main types of DGAT enzymes in the woody perennial biofuel plant Jatropha curcas, JcDGAT1 and JcDGAT2, were previously characterized only in heterologous systems. In this study, we investigated the functions of JcDGAT1 and JcDGAT2 in J. curcas.JcDGAT1 and JcDGAT2 were found to be predominantly expressed during the late stages of J. curcas seed development, in which large amounts of oil accumulated. As expected, overexpression of JcDGAT1 or JcDGAT2 under the control of the CaMV35S promoter gave rise to an increase in seed kernel oil production, reaching a content of 53.7% and 55.7% of the seed kernel dry weight, respectively, which were respectively 25% and 29.6% higher than that of control plants. The increase in seed oil content was accompanied by decreases in the contents of protein and soluble sugars in the seeds. Simultaneously, there was a two- to four-fold higher leaf TAG content in transgenic plants than in control plants. Moreover, by analysis of the fatty acid (FA) profiles, we found that JcDGAT1 and JcDGAT2 had the same substrate specificity with preferences for C18:2 in seed TAGs, and C16:0, C18:0, and C18:1 in leaf TAGs. Therefore, our study confirms the important role of JcDGAT1 and JcDGAT2 in regulating oil production in J. curcas.

3.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255510

RESUMEN

DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1), a phospholipase A1, utilizes galactolipids (18:3) to generate α-linolenic acid (ALA) in the initial step of jasmonic acid (JA) biosynthesis in Arabidopsis thaliana. In this study, we isolated the JcDAD1 gene, an ortholog of Arabidopsis DAD1 in Jatropha curcas, and found that it is mainly expressed in the stems, roots, and male flowers of Jatropha. JcDAD1-RNAi transgenic plants with low endogenous jasmonate levels in inflorescences exhibited more and larger flowers, as well as a few abortive female flowers, although anther and pollen development were normal. In addition, fruit number was increased and the seed size, weight, and oil contents were reduced in the transgenic Jatropha plants. These results indicate that JcDAD1 regulates the development of flowers and fruits through the JA biosynthesis pathway, but does not alter androecium development in Jatropha. These findings strengthen our understanding of the roles of JA and DAD1 in the regulation of floral development in woody perennial plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Frutas/genética , Jatropha/genética , Fosfolipasas A1/genética , Plantas Modificadas Genéticamente/genética , Arabidopsis/genética , Ciclopentanos/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , Jatropha/crecimiento & desarrollo , Oxilipinas/metabolismo , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo
4.
Plant Reprod ; 33(3-4): 191-204, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32997187

RESUMEN

KEY MESSAGE: ABCE model genes along with genes related to GA biosynthesis and auxin signalling may play significant roles in male flower development in Jatropha curcas. Flowering plants exhibit extreme reproductive diversity. Jatropha curcas, a woody plant that is promising for biofuel production, is monoecious. Here, two gynoecious Jatropha mutants (bearing only female flowers) were used to identify key genes involved in male flower development. Using comparative transcriptome analysis, we identified 17 differentially expressed genes (DEGs) involved in floral organ development between monoecious plants and the two gynoecious mutants. Among these DEGs, five floral organ identity genes, Jatropha AGAMOUS, PISTILLATA, SEPALLATA 2-1 (JcSEP2-1), JcSEP2-2, and JcSEP3, were downregulated in ch mutant inflorescences; two gibberellin (GA) biosynthesis genes, Jatropha GA REQUIRING 1 and GIBBERELLIN 3-OXIDASE 1, were downregulated in both the ch and g mutants; and two genes involved in the auxin signalling pathway, Jatropha NGATHA1 and STYLISH1, were downregulated in the ch mutant. Furthermore, four hub genes involved in male flower development, namely Jatropha SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1, CRYPTOCHROME 2, SUPPRESSOR OF OVEREXPRESSION OF CO 1 and JAGGED, were identified using weighted gene correlation network analysis. These results suggest that floral organ identity genes and genes involved in GA biosynthesis and auxin signalling may participate in male flower development in Jatropha. This study will contribute to understanding sex differentiation in woody perennial plants.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Inflorescencia , Jatropha , Proteínas de Plantas , Transcriptoma , Flores/genética , Inflorescencia/genética , Inflorescencia/metabolismo , Jatropha/genética , Jatropha/metabolismo , Proteínas de Plantas/genética
5.
Gigascience ; 9(2)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32048715

RESUMEN

BACKGROUND: Chromatin architecture is an essential factor regulating gene transcription in different cell types and developmental phases. However, studies on chromatin architecture in perennial woody plants and on the function of chromatin organization in sex determination have not been reported. RESULTS: Here, we produced a chromosome-scale de novo genome assembly of the woody plant Jatropha curcas with a total length of 379.5 Mb and a scaffold N50 of 30.7 Mb using Pacific Biosciences long reads combined with genome-wide chromosome conformation capture (Hi-C) technology. Based on this high-quality reference genome, we detected chromatin architecture differences between monoecious and gynoecious inflorescence buds of Jatropha. Differentially expressed genes were significantly enriched in the changed A/B compartments and topologically associated domain regions and occurred preferentially in differential contact regions between monoecious and gynoecious inflorescence buds. Twelve differentially expressed genes related to flower development or hormone synthesis displayed significantly different genomic interaction patterns in monoecious and gynoecious inflorescence buds. These results demonstrate that chromatin organization participates in the regulation of gene transcription during the process of sex differentiation in Jatropha. CONCLUSIONS: We have revealed the features of chromatin architecture in perennial woody plants and investigated the possible function of chromatin organization in Jatropha sex differentiation. These findings will facilitate understanding of the regulatory mechanisms of sex determination in higher plants.


Asunto(s)
Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Jatropha/genética , Cromatina/química , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Jatropha/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...