Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
BMC Cancer ; 24(1): 353, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38504158

NUP155 is reported to be correlated with tumor development. However, the role of NUP155 in tumor physiology and the tumor immune microenvironment (TIME) has not been previously examined. This study comprehensively investigated the expression, immunological function, and prognostic significance of NUP155 in different cancer types. Bioinformatics analysis revealed that NUP155 was upregulated in 26 types of cancer. Additionally, NUP155 upregulation was strongly correlated with advanced pathological or clinical stages and poor prognosis in several cancers. Furthermore, NUP155 was significantly and positively correlated with DNA methylation, tumor mutational burden, microsatellite instability, and stemness score in most cancers. Additionally, NUP155 was also found to be involved in TIME and closely associated with tumor infiltrating immune cells and immunoregulation-related genes. Functional enrichment analysis revealed a strong correlation between NUP155 and immunomodulatory pathways, especially antigen processing and presentation. The role of NUP155 in breast cancer has not been examined. This study, for the first time, demonstrated that NUP155 was upregulated in breast invasive carcinoma (BRCA) cells and revealed its oncogenic role in BRCA using molecular biology experiments. Thus, our study highlights the potential value of NUP155 as a biomarker in the assessment of prognostic prediction, tumor microenvironment and immunotherapeutic response in pan-cancer.


Breast Neoplasms , Carcinoma , Humans , Female , Breast Neoplasms/genetics , Apoptosis , Breast , Cell Proliferation/genetics , Prognosis , Tumor Microenvironment/genetics , Nuclear Pore Complex Proteins/genetics
2.
Nat Commun ; 12(1): 3481, 2021 06 09.
Article En | MEDLINE | ID: mdl-34108482

TcpC is a multifunctional virulence factor of uropathogenic E. coli (UPEC). Neutrophil extracellular trap formation (NETosis) is a crucial anti-infection mechanism of neutrophils. Here we show the influence of TcpC on NETosis and related mechanisms. We show NETosis in the context of a pyelonephritis mouse model induced by TcpC-secreting wild-type E. coli CFT073 (CFT073wt) and LPS-induced in vitro NETosis with CFT073wt or recombinant TcpC (rTcpC)-treated neutrophils are inhibited. rTcpC enters neutrophils through caveolin-mediated endocytosis and inhibits LPS-induced production of ROS, proinflammatory cytokines and protein but not mRNA levels of peptidylarginine deiminase 4 (PAD4). rTcpC treatment enhances PAD4 ubiquitination and accumulation in proteasomes. Moreover, in vitro ubiquitination kit analyses show that TcpC is a PAD4-targetd E3 ubiquitin-ligase. These data suggest that TcpC inhibits NETosis primarily by serving as an E3 ligase that promotes degradation of PAD4. Our findings provide a novel mechanism underlying TcpC-mediated innate immune evasion.


Escherichia coli Proteins/metabolism , Extracellular Traps/metabolism , Neutrophils/metabolism , Protein-Arginine Deiminase Type 4/metabolism , Ubiquitination , Virulence Factors/metabolism , Animals , Chromatin/metabolism , Citrullination , Escherichia coli Infections/immunology , Escherichia coli Infections/pathology , Escherichia coli Proteins/genetics , Histones/metabolism , Immune Evasion , Mice , Mutation , Proteasome Endopeptidase Complex/metabolism , Protein-Arginine Deiminase Type 4/genetics , Pyelonephritis/immunology , Pyelonephritis/pathology , Transcription, Genetic , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Uropathogenic Escherichia coli/metabolism , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/genetics
...