Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 255: 121520, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554631

RESUMEN

Nitrite production via denitrification has been regarded as a key approach for survival of anaerobic ammonium oxidation (anammox) bacteria. Despite the important carbon substrate, little is known about the role of differential genes expression and extracellular metabolite regulation among diverse microbial communities. In this study, a novel alternating feast-famine strategy was proposed and demonstrated to efficiently accumulate nitrite in a low-nitrogen loading rate (NLR) (0.2∼0.8 kg N/m3/d) denitrification system. Highly selective expression of denitrifying genes was revealed as key regulators. Interestingly, in absence of carbon source (ACS) condition, the expression of narG and narI/V genes responsible for reduction of nitrate to nitrite jumped to 2.5 and 5.1 times higher than that in presence of carbon source (PCS) condition with carbon to nitrate ratio of 3.0. This fortunately facilitated a rapid nitrite accumulation once acetate was added, despite a significantly down-regulated narG and narI/narV and up-regulated nirS/nirK. This strategy selected Thauera as the most dominant denitrifier (50.2 %) with the highest contribution to narG and narI/narV genes, responsible for the high nitrite accumulation. Additionally, extracellular xylose, pyruvate, and glucose jointly promoted carbon-central metabolic pathway of key denitrifiers in ACS stage, playing an important role in the process of self-growth and selective enrichment of functional bacteria. The relatively rapid establishment and robust performance obtained in this study shows an engineering-feasible and economically-favorable solution for the regulation of partial denitrification in practical application.

2.
Sci Total Environ ; 904: 166760, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659567

RESUMEN

The high-rate and stably efficient nitrite generation is vital and still challenges the wide application of partial denitrification (PD) and anammox technology. Increasing attention has been drawn to the granulation of PD biomass. However, the knowledge of PD granular sludge is still limited in terms of granules characterization and mechanisms of biomass aggregation for high nitrite accumulation. This work reviewed the performance and granulation of PD biomass for high nitrite accumulation via nitrate reduction, including the system start-up, influential factors, granular characteristics, hypothetical mechanism, challenges and perspectives in future application. The physiochemical characterization and key influential factors were summarized in view of nitrite production, morphology analysis, extracellular polymer substance structure, as well as microbial mechanisms. The PD granules exhibit potential advantages of a high biomass density, good settleability, high hydraulic loading rates, and strong shock resistance. A novel granular sludge-based PD combined with anammox process was proposed to enhance the capability of nitrogen removal. In the future, PD granules utilizing different electron donors is a promising way to broaden the application of anammox technology in both municipal and industrial wastewater treatment.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/química , Desnitrificación , Nitritos/química , Oxidación-Reducción , Reactores Biológicos , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...