Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Sci ; 149(1): 121-33, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26424773

RESUMEN

The possibility that exposure to general anesthetics during early life results in long-term impairment of neural function attracted considerable interest over the past decade. Extensive laboratory data suggest that administration of these drugs during critical stages of central nervous system development can lead to cell death, impaired neurogenesis, and synaptic growth as well as cognitive deficits. These observations are corroborated by several recent human epidemiological studies arguing that such cognitive impairment might also occur in humans. Despite the potential public health importance of this issue, several important questions remain open. Amongst them, how the duration of anesthesia exposure impact on outcome is as yet not fully elucidated. To gain insight into this question, here we focused on the short- and long-term impact of a 30-min-long exposure to clinically relevant concentrations of sevoflurane in rat pups at 2 functionally distinct stages of the brain growth spurt. We show that this treatment paradigm induced developmental stage-dependent and brain region-specific acute but not lasting changes in dendritic spine densities. Electrophysiological recordings in hippocampal brain slices from adult animals exposed to anesthesia in the early postnatal period revealed larger paired-pulse facilitation but no changes in the long-term potentiation paradigm when compared with nonanesthetized controls. 5-bromo-2-deoxyuridine pulse and pulse-chase experiments demonstrated that neither proliferation nor differentiation and survival of hippocampal progenitors were affected by sevoflurane exposure. In addition, behavioral testing of short- and long-term memory showed no differences between control and sevoflurane-exposed animals. Overall, these results suggest that brief sevoflurane exposure during critical periods of early postnatal development, although it does not seem to exert major long-term effects on brain circuitry development, can induce subtle changes in synaptic plasticity and spine density of which the physiological significance remains to be determined.


Asunto(s)
Anestésicos por Inhalación/toxicidad , Espinas Dendríticas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Éteres Metílicos/toxicidad , Plasticidad Neuronal/efectos de los fármacos , Anestesia , Animales , Animales Recién Nacidos , Hipocampo/patología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Sevoflurano
2.
Neural Regen Res ; 9(23): 2087-94, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25657726

RESUMEN

Endovascular surgery is advantageous in experimentally induced ischemic stroke because it causes fewer cranial traumatic lesions than invasive surgery and can closely mimic the pathophysiology in stroke patients. However, the outcomes are highly variable, which limits the accuracy of evaluations of ischemic stroke studies. In this study, eight healthy adult rhesus monkeys were randomized into two groups with four monkeys in each group: middle cerebral artery occlusion at origin segment (M1) and middle cerebral artery occlusion at M2 segment. The blood flow in the middle cerebral artery was blocked completely for 2 hours using the endovascular microcoil placement technique (1 mm × 10 cm) (undetachable), to establish a model of cerebral ischemia. The microcoil was withdrawn and the middle cerebral artery blood flow was restored. A reversible middle cerebral artery occlusion model was identified by hematoxylin-eosin staining, digital subtraction angiography, magnetic resonance angiography, magnetic resonance imaging, and neurological evaluation. The results showed that the middle cerebral artery occlusion model was successfully established in eight adult healthy rhesus monkeys, and ischemic lesions were apparent in the brain tissue of rhesus monkeys at 24 hours after occlusion. The rhesus monkeys had symptoms of neurological deficits. Compared with the M1 occlusion group, the M2 occlusion group had lower infarction volume and higher neurological scores. These experimental findings indicate that reversible middle cerebral artery occlusion can be produced with the endovascular microcoil technique in rhesus monkeys. The M2 occluded model had less infarction and less neurological impairment, which offers the potential for application in the field of brain injury research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...