Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmacol Res ; 206: 107280, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914382

RESUMEN

Digestive tract cancers are among the most common malignancies worldwide and have high incidence and mortality rates. Thus, the discovery of more effective diagnostic and therapeutic targets is urgently required. The development of technologies to accurately detect RNA modification has led to the identification of numerous RNA chemical modifications in humans (epitranscriptomics) that are involved in the occurrence and development of digestive tract cancers. RNA modifications can cooperatively regulate gene expression to facilitate normal physiological functions of the digestive system. However, the dysfunction of relevant RNA-modifying enzymes ("writers," "erasers," and "readers") can lead to the development of digestive tract cancers. Consequently, targeting dysregulated enzyme activity could represent a potent therapeutic strategy for the treatment of digestive tract cancers. In this review, we summarize the most widely studied roles and mechanisms of RNA modifications (m6A, m1A, m5C, m7G, A-to-I editing, pseudouridine [Ψ]) in relation to digestive tract cancers, highlight the crosstalk between RNA modifications, and discuss their roles in the interactions between the digestive system and microbiota during carcinogenesis. The clinical significance of novel therapeutic methods based on RNA-modifying enzymes is also discussed. This review will help guide future research into digestive tract cancers that are resistant to current therapeutics.


Asunto(s)
Epigénesis Genética , Humanos , Animales , ARN/genética , ARN/metabolismo , Neoplasias Gastrointestinales/genética , Procesamiento Postranscripcional del ARN , Neoplasias del Sistema Digestivo/genética , Neoplasias del Sistema Digestivo/terapia
2.
Mol Med ; 30(1): 81, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862942

RESUMEN

BACKGROUND: Studies have highlighted a possible crosstalk between the pathogeneses of COVID-19 and systemic lupus erythematosus (SLE); however, the interactive mechanisms remain unclear. We aimed to elucidate the impact of COVID-19 on SLE using clinical information and the underlying mechanisms of both diseases. METHODS: RNA-seq datasets were used to identify shared hub gene signatures between COVID-19 and SLE, while genome-wide association study datasets were used to delineate the interaction mechanisms of the key signaling pathways. Finally, single-cell RNA-seq datasets were used to determine the primary target cells expressing the shared hub genes and key signaling pathways. RESULTS: COVID-19 may affect patients with SLE through hematologic involvement and exacerbated inflammatory responses. We identified 14 shared hub genes between COVID-19 and SLE that were significantly associated with interferon (IFN)-I/II. We also screened and obtained four core transcription factors related to these hub genes, confirming the regulatory role of the IFN-I/II-mediated Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway on these hub genes. Further, SLE and COVID-19 can interact via IFN-I/II and IFN-I/II receptors, promoting the levels of monokines, including interleukin (IL)-6/10, tumor necrosis factor-α, and IFN-γ, and elevating the incidence rate and risk of cytokine release syndrome. Therefore, in SLE and COVID-19, both hub genes and core TFs are enriched within monocytes/macrophages. CONCLUSIONS: The interaction between SLE and COVID-19 promotes the activation of the IFN-I/II-triggered JAK-STAT signaling pathway in monocytes/macrophages. These findings provide a new direction and rationale for diagnosing and treating patients with SLE-COVID-19 comorbidity.


Asunto(s)
COVID-19 , Estudio de Asociación del Genoma Completo , Lupus Eritematoso Sistémico , SARS-CoV-2 , Transducción de Señal , Humanos , COVID-19/genética , Lupus Eritematoso Sistémico/genética , SARS-CoV-2/fisiología , Femenino , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/genética , Masculino , Transcriptoma , Perfilación de la Expresión Génica , Multiómica
3.
Chempluschem ; 89(8): e202400104, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38459786

RESUMEN

In this work, we explored the hydrothermal synthesize and crystallization process of SAPO-34 zeolites from two-dimensional layered silicate magadiite by using tetraethylammonium hydroxide (TEAOH) as a templating agent. Comprehensive characterization was conducted by XRD, SEM, FTIR, Raman, and BET. Time-resolved PXRD analysis revealed that SAPO-34 zeolite exhibited a steep growth curve when the crystallization time was 30 h, and the crystallinity reached 98.65 % at 48 h. Specifically, the disruption of the magadiite layer exposed charged silanol groups on the surface, fostering an affinity for AlO4 and PO4 species, thereby initiating the nucleation process. Under the guidance of TEAOH, these nucleation sites transformed into SAPO-34 nuclei, gradually advancing towards crystallization. FTIR and Raman analyses affirmed the presence of 6Rs, followed by D6R and 4Rs SBUs, along with the characteristic CHA structure. Combined with 29Si NMR established that disaggregated silicate minerals served as zeolite synthesis "seeds", enhancing nucleation sites and overall crystallization efficiency.

4.
Environ Sci Pollut Res Int ; 31(9): 13867-13882, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38265584

RESUMEN

Pyrolysis technology is crucial for realizing waste bischofite resource utilization. However, previous studies overlooked the complexity of multistep pyrolysis, resulting in a lack of thorough knowledge of the pyrolysis behavior and kinetics. The pyrolysis products were characterized using XRD and FTIR to indicate the bischofite pyrolysis behavior. Additionally, the multistep kinetics was studied using the segmented single-step reaction (SSSR) and Fraser-Suzuki combined kinetic (FSCK) methods. The results show that the bischofite pyrolysis is divided into dehydration and hydrolysis. The former refers to removing crystalline water from MgCl2·nH2O (n = 4,6). At the same time, the latter is related to the removal of HCl, characterized by the strengthening of the Mg-O bond in the FTIR analysis and the emergence of MgOHCl·1.5H2O in the XRD examination. The two main stages are divided into three dehydration reactions (D-1, D-2, D-3) and three hydrolysis reactions (H-1, H-2, H-3) by DTG-DDTG or Fraser-Suzuki deconvolution. Compared with the SSSR method, the FSCK method has improved model repeatability for multistep kinetic parameters. Following Fraser-Suzuki deconvolution, the FSCK method creates almost the same activation energy results when using the Friedman (FR), Kissinger-Akahira-Sunose (KAS), and Vyazovkin (VZK). This work provides fundamental data to promote the maximizing waste bischofite resource utilization.


Asunto(s)
Deshidratación , Pirólisis , Humanos , Cinética , Termogravimetría , Biomasa
5.
ACS Omega ; 8(49): 47153-47162, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107934

RESUMEN

Currently, the traditional magnesium oxide production process is facing exceptional challenges arising from carbon emission restrictions and environmental protection. Waste bischofite pyrolysis has attracted much attention as a promising technology to address these challenges. Nonetheless, this process has primarily been demonstrated on a laboratory scale, with limited studies on an industrial scale. A comprehensive exergy analysis was conducted for the entire process and individual subunits within the pyrolysis process to identify potential areas for process enhancement. A FORTRAN subroutine based on empirical correlations of pyrolysis product yields was developed considering the impact of decomposition reactions on the simulation. Furthermore, the optimization of energy and exergy efficiency of the system was discussed in terms of the carbon dioxide emission factor, equivalence ratio, and pyrolysis temperature. The results show that the primary energy bottleneck lies in the combustion phase. In addition, the optimal energy and exergy efficiency conditions are a carbon dioxide emission factor of 5.3, an equivalent ratio of 1.15, and a pyrolysis temperature of 1100 °C. In comparison to the pilot-scale conditions, the energy efficiency and exergy efficiency increase by 2.55 and 3.61%, respectively. At this time, the MgO yield is 100%, and the HCl concentration is above 9.33%.

6.
Heliyon ; 9(9): e19680, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809908

RESUMEN

Background: The epigenetic regulator in cancer progression and immune response has been demonstrated recently. However, the potential implications of 5-methylcytosine (m5C) in soft tissue sarcoma (STS) are unclear. Methods: The RNA sequence profile of 911 normal and 259 primary STS tissues were obtained from GTEx and TCGA databases, respectively. We systematically analyzed the m5C modification patterns of STS samples based on 11 m5C regulators, and comprehensively correlated these modification patterns with clinical characteristics, prognosis, and tumor microenvironment (TME) cell-infiltrating. Furthermore, an m5C-related signature was generated using Cox proportional hazard model and validated by the GSE17118 cohort. Results: Two distinct m5C modification patterns (cluster1/2) were discovered. The cluster1 had favorable overall survival, higher immune score, higher expression of most immune checkpoints, and active immune cell infiltration. The GSVA analysis of the P53 pathway, Wnt signaling pathway, G2M checkpoint, mTORC1 signaling, Wnt/ß catenin signaling, and PI3K/AKT/mTOR signaling were significantly enriched in the cluster2. Moreover, 1220 genes were differentially expressed between two clusters, and a m5C prognostic signature was constructed with five m5C-related genes. The signature represented an independent prognostic factor and showed the favorable performance in the GSE17118 cohort. Patients in the low-risk group showed higher immunoscore and higher expression of most immune checkpoints. Further GSVA analysis indicated that the levels of P53 pathway, Wnt signaling pathway, and TGF-ß signaling pathway were different between low- and high-risk groups. Moreover, a nomogram incorporating m5C signature and clinical variables was established and showed well performance. Conclusion: This work showed that the m5C modification plays a significant role in the progression of STS and the formation of TME diversity. Evaluating the m5C modification pattern of tumor will enhance our cognition of TME infiltration characterization to guide more effective immunotherapy strategies.

7.
Environ Technol ; : 1-11, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36062994

RESUMEN

The magnesium slag (magnesium nitrate hydrate Mg(NO3)2·6H2O) produced in the nitric acid leaching process of laterite nickel ore can be effectively recycled by thermal decomposition. To this end, this study placed great emphasis on disclosing the thermal decomposition mechanism of Mg(NO3)2·6H2O. Firstly, thermal decomposition paths of Mg(NO3)2·6H2O were revealed through Thermogravimetry-Mass Spectrometry, Differential Scanning Calorimetry and powder X-ray diffraction. It was found that the thermal decomposition of Mg(NO3)2·6H2O was a multistep endothermic reaction involving two dehydration stages and one denitration stage. The two dehydration stages were characterized by the evolution of H2O, with the formation of magnesium nitrate dihydrate and anhydrous magnesium nitrate. The denitration stage was characterized by the simultaneous evolution of O2 and NO2, with the formation of MgO. The conventional kinetic analysis was not suitable for describing such complex multistep reaction behaviour. Thus, the kinetic rate data (dα/dt-T) for the overall reaction were separated into those for three contributing stages by mathematical peak deconvolution. Then, the complete kinetic interpretations of the separated reaction stages for Mg(NO3)2·6H2O pyrolysis were achieved by the Friedman method and the master plots method. Finally, the original experimental α-T curves were successfully simulated using the resulting kinetic triplets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA