Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 75: 103296, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098263

RESUMEN

The lung macrophages play a crucial role in health and disease. Sexual dimorphism significantly impacts the phenotype and function of tissue-resident macrophages. The primary mechanisms responsible for sexually dimorphic outcomes in bronchopulmonary dysplasia (BPD) remain unidentified. We tested the hypothesis that biological sex plays a crucial role in the transcriptional state of alveolar macrophages, using neonatal murine hyperoxia-induced lung injury as a relevant model for human BPD. The effects of neonatal hyperoxia exposure (95 % FiO2, PND1-5: saccular stage) on the lung myeloid cells acutely after injury and during normoxic recovery were measured. Alveolar macrophages (AM) from room air- and hyperoxia exposed from male and female neonatal murine lungs were subjected to bulk-RNA Sequencing. AMs are significantly depleted in the hyperoxia-exposed lung acutely after injury, with subsequent recovery in both sexes. The transcriptome of the alveolar macrophages is impacted by neonatal hyperoxia exposure and by sex as a biological variable. Pathways related to DNA damage and interferon-signaling were positively enriched in female AMs. Metabolic pathways related to glucose and carbohydrate metabolism were positively enriched in the male AMs, while oxidative phosphorylation was negatively enriched. These pathways were shared with monocytes and airway macrophages from intubated male and female human premature neonates.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39077370

RESUMEN

Adenine nucleotide translocator (ANT) is a mitochondrial protein involved in the exchange of ADP and ATP across the mitochondrial inner membrane. It plays a crucial role in cellular energy metabolism by facilitating the transport of ATP synthesized within the mitochondria to the cytoplasm. The isoform ANT1 predominately expresses in cardiac and skeletal muscles. Mutations or dysregulation in ANT1 have been implicated in various mitochondrial disorders and neuromuscular diseases. We aimed to examine whether ANT1 deletion may affect mitochondrial redox state in our established ANT1-deficient mice. Hearts and quadriceps resected from age-matched wild type (WT) and ANT1-deficient mice were snap-frozen in liquid nitrogen. The Chance redox scanner was utilized to perform 3D optical redox imaging. Each sample underwent scanning across 3-5 sections. Global averaging analysis showed no significant differences in the redox indices (NADH, flavin adenine dinucleotide containing-flavoproteins Fp, and the redox ratio Fp/(NADH+Fp) between WT and ANT1-deficient groups. However, quadriceps had higher Fp than hearts in both groups (p = 0.0004 and 0.01, respectively). Furthermore, the quadriceps were also more oxidized (a higher redox ratio) than hearts in WT group (p = 0.004). NADH levels were similar in all cases. Our data suggest that under non-stressful physical condition, the ANT1-deficient muscle cells were in the same mitochondrial state as WT ones and that the significant difference in the mitochondrial redox state between quadriceps and hearts found in WT might be diminished in ANT1-deficient ones. Redox imaging of muscles under physical stress can be conducted in future.

3.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38730620

RESUMEN

To develop imaging biomarkers for tumors aggressiveness, our previous optical redox imaging (ORI) studies of the reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp, containing flavin adenine dinucleotide, i.e., FAD) in tumor xenografts of human melanoma associated the high optical redox ratio (ORR = Fp/(Fp + NADH)) and its heterogeneity to the high invasive/metastatic potential, without having reported quantitative results for NADH and Fp. Here, we implemented a calibration procedure to facilitate imaging the nominal concentrations of tissue NADH and Fp in the mouse xenografts of two human melanoma lines, an indolent less metastatic A375P and a more metastatic C8161. Images of the redox indices (NADH, Fp, ORR) revealed the existence of more oxidized areas (OAs) and more reduced areas (RAs) within individual tumors. ORR was found to be higher and NADH lower in C8161 compared to that of A375P xenografts, both globally for the whole tumors and locally in OAs. The ORR in the OA can differentiate xenografts with a higher statistical significance than the global averaged ORR. H&E staining of the tumors indicated that the redox differences we identified were more likely due to intrinsically different cell metabolism, rather than variations in cell density.

4.
Antioxidants (Basel) ; 13(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38790651

RESUMEN

Emerging data indicate that lung macrophages (LM) may provide a novel biomarker to classify disease endotypes in bronchopulmonary dysplasia (BPD), a form of infant chronic lung disease, and that augmentation of the LM phenotype may be a potential therapeutic target. To contribute to this area of research, we first used Optical Redox Imaging (ORI) to characterize the responses to H2O2-induced oxidative stress and caffeine treatment in an in vitro model of mouse alveolar macrophages (AM). H2O2 caused a dose-dependent decrease in NADH and an increase in FAD-containing flavoproteins (Fp) and the redox ratio Fp/(NADH + Fp). Caffeine treatment did not affect Fp but significantly decreased NADH with doses of ≥50 µM, and 1000 µM caffeine treatment significantly increased the redox ratio and decreased the baseline level of mitochondrial ROS (reactive oxygen species). However, regardless of whether AM were pretreated with caffeine or not, the mitochondrial ROS levels increased to similar levels after H2O2 challenge. We then investigated the feasibility of utilizing ORI to examine macrophage redox status in tracheal aspirate (TA) samples obtained from premature infants receiving invasive ventilation. We observed significant heterogeneity in NADH, Fp, Fp/(NADH + Fp), and mitochondrial ROS of the TA macrophages. We found a possible positive correlation between gestational age and NADH and a negative correlation between mean airway pressure and NADH that provides hypotheses for future testing. Our study demonstrates that ORI is a feasible technique to characterize macrophage redox state in infant TA samples and supports further use of this method to investigate lung macrophage-mediated disease endotypes in BPD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA