Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Zool Res ; 44(3): 451-466, 2023 May 18.
Article En | MEDLINE | ID: mdl-36994536

Chronic liver injury leads to progressive liver fibrosis and ultimately cirrhosis, a major cause of morbidity and mortality worldwide. However, there are currently no effective anti-fibrotic therapies available, especially for late-stage patients, which is partly attributed to the major knowledge gap regarding liver cell heterogeneity and cell-specific responses in different fibrosis stages. To reveal the multicellular networks regulating mammalian liver fibrosis from mild to severe phenotypes, we generated a single-nucleus transcriptomic atlas encompassing 49 919 nuclei corresponding to all main liver cell types at different stages of murine carbon tetrachloride (CCl 4)-induced progressive liver fibrosis. Integrative analysis distinguished the sequential responses to injury of hepatocytes, hepatic stellate cells and endothelial cells. Moreover, we reconstructed cell-cell interactions and gene regulatory networks implicated in these processes. These integrative analyses uncovered previously overlooked aspects of hepatocyte proliferation exhaustion and disrupted pericentral metabolic functions, dysfunction for clearance by apoptosis of activated hepatic stellate cells, accumulation of pro-fibrotic signals, and the switch from an anti-angiogenic to a pro-angiogenic program during CCl 4-induced progressive liver fibrosis. Our dataset thus constitutes a useful resource for understanding the molecular basis of progressive liver fibrosis using a relevant animal model.


Endothelial Cells , Liver Cirrhosis , Mice , Animals , Endothelial Cells/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/veterinary , Carbon Tetrachloride/toxicity , Cell Communication , Mammals
2.
Biomed Environ Sci ; 35(12): 1115-1125, 2022 Dec 20.
Article En | MEDLINE | ID: mdl-36597291

Objective: To develop an effective treatment strategy to simultaneously avoid fatal adverse effects in the treatment of oral cancer, combination therapy has been explored because of its multiple functions. This work aims to develop a novel type of gold-nanorod-based nanomaterials decorated with tetrahedral DNA nanostructures (TDN) carrying antitumor drugs, namely, GNR@TDN-DOX nanocomposites. Methods: In the designed structure, TDN, with a three-dimensional geometry composed of DNA strands, can provide GC base pairs for binding with the anticancer drug doxorubicin (DOX). The photothermal heating properties, biocompatibility properties, and antitumor performance of obtained GNR@TDN-DOX nanocomposites were investigated to assess their application potential in tumor treatment. Results: Systematic studies have shown that the obtained GNR@TDN-DOX nanocomposites have high photothermal conversion under the illumination of an 808-nm infrared laser, leading to effective antitumor applications. In addition, the cell viability study shows that GNR@TDN-DOX nanocomposites have good biocompatibility. In vitro studies based on A375 cells show that the GNR@TDN-DOX nanocomposites can effectively eliminate cancer cells because of the combination of photothermal therapy induced by GNRS and chemotherapy induced by TDN-carrying DOX. The result shows that the obtained GNR@TDN-DOX nanocomposites have efficient cellular uptake and lysosome escape ability, together with their nuclear uptake behavior, which results in a significant antitumor effect. Conclusion: This work has demonstrated a potential nanoplatform for anticancer applications.


Gold , Nanotubes , Gold/chemistry , Photothermal Therapy , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Nanotubes/chemistry , DNA , Cell Line, Tumor
...