Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
2.
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi ; 37(10): 843-847;852, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37828893

RESUMEN

Necrotizing otitis externa is a progressive infectious disease involving the external auditory canal and even the skull base, which can lead to serious complications and even death if not treated in time. In this paper, the latest advances in etiology, pathogenesis, clinical manifestations, diagnosis and treatment were reviewed based on previous literature, providing reference for clinical diagnosis, treatment and future research.


Asunto(s)
Otitis Externa , Humanos , Otitis Externa/diagnóstico , Otitis Externa/terapia , Base del Cráneo/patología , Conducto Auditivo Externo/patología , Cabeza
3.
Biochem Biophys Res Commun ; 658: 44-54, 2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-37023614

RESUMEN

Some genes are delivered to cochleae by adenoviruses to restore partial hearing function. This provides promising prospects for gene therapies for hearing loss from hair cell damage. To study the adenovirus (AD)-mediated effect of the Wnt and Notch signalling pathways on hair cell regeneration in the mouse cochlea, we constructed a ß-catenin-adenovirus (ß-catenin-AD) to increase the activity of the Wnt signalling pathway and a NICD (intracellular domain of Notch1)-RNAi-adenovirus to decrease the activity of the Notch signalling pathway (NICD-RNAi-AD). Our study indicated that approximately 40% of supporting cells in the cochleae damaged by gentamicin were infected with the adenoviruses. Following the ß-catenin-AD-mediated increase in Wnt signalling pathway activity, mitotic regeneration was increased, while direct transdifferentiation was increased after the NICD-RNAi-AD-mediated decrease in Notch signalling pathway activity. The expected synergistic interaction on hair cell regeneration was not obtained after coinfection of ß-catenin-AD and NICD-RNAi-AD into the damaged cochleae, which might be due to the low cotransfection efficiency to supporting cells. Our study indicated that it may be possible to develop AD mediated gene therapies for hearing loss that act by regulating the Wnt and Notch signalling pathways.


Asunto(s)
Pérdida Auditiva , beta Catenina , Animales , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Vía de Señalización Wnt/fisiología
4.
Medicine (Baltimore) ; 102(7): e33000, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800592

RESUMEN

RATIONALE AND PATIENT CONCERNS: Congenital hearing loss is often caused by an inner ear malformation, in such cases, the presence of other anomalies, such as microtia, and venous anomalies of the temporal bone and laryngomalacia makes it challenging to perform cochlear implantation surgery. DIAGNOSES: This study reports the case of a 28-month-old girl with congenital profound hearing loss, laryngomalacia, and malformed inner ear, who received cochlear implantation surgery. The bony structure, vessels and nerves were first assessed through magnetic resonance imaging and computed tomography before exploring the genetic basis of the condition using trio-based whole exome sequencing. Perioperative evaluation and management of the airway was then performed by experienced anesthesiologist, with the surgical challenges as well as problems encountered fully evaluated. INTERVENTIONS: Cochlear implantation was eventually performed using a trans-mastoid approach under uneventful general anesthesia. OUTCOMES: Due to the small size of the cochlea, a short electrode FLEX24 was inserted through the cochleostomy. LESSONS: Considering the high risk of facial nerve injury and limited access to the cochlea when patients present significant bony and venous anomalies, cochlear implantation in such patients require careful preoperative evaluation and thoughtful planning. In these cases, airway assessment, magnetic resonance venography, magnetic resonance arteriography, and magnetic resonance imaging and computed tomography can be useful to minimize the risks. Intraoperative facial nerve monitoring is also recommended to assist in the safe location of facial nerve.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Microtia Congénita , Pérdida Auditiva Sensorineural , Laringomalacia , Malformaciones Vasculares , Preescolar , Femenino , Humanos , Cóclea/anomalías , Cóclea/patología , Cóclea/cirugía , Implantación Coclear/métodos , Microtia Congénita/cirugía , Pérdida Auditiva Sensorineural/cirugía , Laringomalacia/cirugía , Hueso Temporal/diagnóstico por imagen , Hueso Temporal/cirugía , Hueso Temporal/patología , Malformaciones Vasculares/complicaciones , Malformaciones Vasculares/cirugía , Malformaciones Vasculares/patología
5.
Mol Genet Genomic Med ; 11(3): e2103, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36373990

RESUMEN

BACKGROUND: Myhre syndrome is a rare multisystem genetic disorder that is caused by de novo heterozygous gain-of-function variants in SMAD4. Patients with Myhre syndrome exhibit several phenotypes at different ages such as small size, autism, developmental delay, left-sided heart defects, and hearing loss and often have a characteristic facial appearance. The early clinical diagnosis of Myhre syndrome remains a major challenge, particularly in the first year of life. METHODS: A Chinese male infant with syndactyly of fingers, hypertelorism, short palpebral fissures, and short philtrum was enrolled into the ENT department of the Chinese PLA General Hospital. Whole exome sequencing analysis was used to detect the disease-causing variant. A literature review of Myhre syndrome was also performed. RESULTS: A recurrent de novo missense variant c.1498A > G p.I500V(p. Ile500Val) in SMAD4 was detected confirming the clinical diagnosis of Myhre syndrome at the age of 38 days. The infant appears to be the youngest reported case of Myhre syndrome. At 23-month follow-up, the affected infant has dysmorphic facial features, growth retardation, and previously undescribed complete syndactyly. Review the literatures noted several common features in Myhre syndrome patients including hearing loss (72.7%), characteristic facial features (26.0%-54.5%), finger and toe abnormalities (3.9%-48.1%), short stature (45.5%), and respiratory (30.0%) and cardiovascular problems (65.0%). CONCLUSIONS: Clinicians should have a low threshold to perform genetic testing on patients with features suggesting Myhre syndrome even in the first year of life. Although some individuals with Myhre syndrome have normal hearing, early onset or progressive hearing loss usually occur in one or both ears in most patients, with remarkable phenotypic heterogeneity. Syndactyly may be minor such as typical 2-3 toe involvement, or more complicated as was observed in our patient.


Asunto(s)
Sordera , Pérdida Auditiva , Discapacidad Intelectual , Sindactilia , Humanos , Masculino , Trastornos del Crecimiento/genética , Discapacidad Intelectual/genética , Recién Nacido
6.
BMC Med Genomics ; 15(1): 241, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401330

RESUMEN

Pathogenic variants in MYO15A are known to cause autosomal recessive nonsyndromic hearing loss (ARNSHL), DFNB3. We have previously reported on one ARNSHL family including two affected siblings and identified MYO15A c.5964+3G > A and c.8375 T > C (p.Val2792Ala) as the possible deafness-causing variants. Eight year follow up identified one new affected individual in this family, who also showed congenital, severe to profound sensorineural hearing loss. By whole exome sequencing, we identified a new splice-site variant c.5531+1G > C (maternal allele), in a compound heterozygote with previously identified missense variant c.8375 T > C (p.Val2792Ala) (paternal allele) in MYO15A as the disease-causing variants. The new affected individual underwent unilateral cochlear implantation at the age of 1 year, and 5 year follow-up showed satisfactory speech and language outcomes. Our results further indicate that MYO15A-associated hearing loss is good candidates for cochlear implantation, which is in accordance with previous report. In light of our findings and review of the literatures, 58 splice-site variants in MYO15A are correlated with a severe deafness phenotype, composed of 46 canonical splice-site variants and 12 non-canonical splice-site variants.


Asunto(s)
Sordera , Pérdida Auditiva , Humanos , Linaje , Miosinas/genética , Sordera/genética , Pérdida Auditiva/genética , Fenotipo , Familia , Genotipo
7.
Front Genet ; 13: 825082, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711932

RESUMEN

Non-syndromic hearing loss (NSHL) is a common neurosensory disease with an extreme genetic heterogeneity which has been linked to variants in over 120 genes. The LOXHD1 gene (DFNB77), encoding lipoxygenase homology domain 1, is a rare hearing loss gene found in several populations. To evaluate the importance of LOXHD1 variants in Chinese patients with NSHL, we performed genetic analysis on LOXHD1 in 2,901 sporadic Chinese patients to identify the aspect and frequency of LOXHD1 causative variants. Next-generation sequencing using a custom gene panel of HL was conducted on 2,641 unrelated patients and whole-exome sequencing on the remaining 260 patients. A total of 33 likely causative variants were identified in 21 patients, including 20 novel variants and 13 previously reported pathogenic variants. Each of the 20 novel variants was evaluated according to ACMG criteria. These findings showed that causative variants in LOXHD1 were found in about 0.72% (21/2,901) of Chinese NSHL patients. This study is by far the largest number of novel variants identified in this gene expanding the range of pathogenic variants in LOXHD1, and suggests that variants in this gene occur relatively commonly in Chinese NSHL patients. This extensive investigation of LOXHD1 in Chinese NSHL patients proposed six recurrent LOXHD1 variants. These findings may assist in both molecular diagnosis and genetic counseling.

8.
BMC Med Genomics ; 14(1): 277, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809627

RESUMEN

Mutations in the Forkhead Box C1 (FOXC1) are known to cause autosomal dominant hereditary Axenfeld-Rieger syndrome, which is a genetic disorder characterized by ocular and systemic features including glaucoma, variable dental defects, craniofacial dysmorphism and hearing loss. Due to late-onset of ocular disorders and lack of typical presentation, clinical diagnosis presents a huge challenge. In this study, we described a pathogenic in-frame variant in FOXC1 in one 5-year-old boy who is presented with hypertelorism, pupil deformation in both eyes, conductive hearing loss, and dental defects. By whole exome sequencing, we identified a 3 bp deletion in FOXC1, c.516_518delGCG (p.Arg173del) as the disease-causing variant, which was de novo and not detected in the parents, and could be classified as a "pathogenic variant" according to the American College of Medical Genetics and Genomics guidelines. After confirmation of this FOXC1 variant, clinical data on Axenfeld-Rieger syndrome-associated clinical features were collected and analyzed. Furthermore, Although the affected individual present hearing loss, however, the hearing loss is conductive and is reversible during the follow-up, which might not linke to the FOXC1 variant and is coincidental. Routine examination of FOXC1 is necessary for the genetic diagnosis of hypertelorism-associated syndrome. These findings may assist clinicians in reaching correct clinical and molecular diagnoses, and providing appropriate genetic counseling.


Asunto(s)
Anomalías del Ojo , Enfermedades Hereditarias del Ojo , Segmento Anterior del Ojo/anomalías , Preescolar , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Enfermedades Hereditarias del Ojo/genética , Factores de Transcripción Forkhead/genética , Humanos , Masculino
9.
Hear Res ; 401: 108161, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33422722

RESUMEN

Hair cells can be regenerated after damage by transdifferentiation in which a supporting cell directly differentiates into a hair cell without mitosis. However, such regeneration is at the cost of exhausting the support cells in the mammalian mature cochlea. Thus, more effective methods should be found to promote mitotic regeneration but partially preserve support cells after damage. To address the issue, we first injured hair cells in the chick basilar papillae (BP) by treatment with streptomycin in vitro. We then compared the mitotic regeneration on the neural side in the middle part of BP after treatment with a pharmacological inhibitor or agonist of the Notch (DAPT), Wnt (LiCl), Bmp (Noggin) or Fgf (SU5402) signaling pathway, with that after treatment with combinations of two or three inhibitors or agonist of these pathways. Our results indicate that treatments with a single inhibitor or agonist of the Notch, Wnt, Bmp or Fgf signaling pathway could significantly increase mitotic regeneration as well as direct transdifferentiation. The results also show that hair cells (Myosin 7a+), support cells (Sox2+) and mitotically regenerated hair cells (Myosin 7a+/Sox2+/BrdU+) increased significantly on the neural side in the middle part of BP after two or three combinations of the inhibition of Notch, Bmp or Fgf signaling pathway or the activation of Wnt signaling pathway, besides the reported coregulatory effects of Notch and Wnt signaling. The study of the effects of systematic combinations of pathway modulators provided more insight into hair cell regeneration from mitosis.


Asunto(s)
Órgano Espiral , Animales , Proliferación Celular , Pollos , Miosinas , Regeneración , Estreptomicina/toxicidad , Vía de Señalización Wnt
10.
J Med Genet ; 58(7): 465-474, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32737134

RESUMEN

BACKGROUND: Germline variants in PTPN11 are the primary cause of Noonan syndrome with multiple lentigines (NSML) and Noonan syndrome (NS), which share common skin and facial symptoms, cardiac anomalies and retardation of growth. Hearing loss is considered an infrequent feature in patients with NSML/NS. However, in our cohort, we identified a group of patients with PTPN11 pathogenic variants that were primarily manifested in congenital sensorineural hearing loss (SNHL). This study evaluated the incidence of PTPN11-related NSML or NS in patients with congenital SNHL and explored the expression of PTPN11 and the underlying mechanisms in the auditory system. METHODS: A total of 1502 patients with congenital SNHL were enrolled. Detailed phenotype-genotype correlations were analysed in patients with PTPN11 variants. Immunolabelling of Ptpn11 was performed in P35 mice. Zebrafish with Ptpn11 knockdown/mutant overexpression were constructed to further explore mechanism underlying the phenotypes. RESULTS: Ten NSML/NS probands were diagnosed via the identification of pathogenic variants of PTPN11, which accounted for ~0.67% of the congenital SNHL cases. In mice cochlea, Shp2, which is encoded by Ptpn11, is distributed in the spiral ganglion neurons, hair cells and supporting cells of the inner ear. In zebrafish, knockdown of ptpn11a and overexpression of mutant PTPN11 were associated with a significant decrease in hair cells and supporting cells. We concluded that congenital SNHL could be a major symptom in PTPN11-associated NSML or NS. Other features may be mild, especially in children. CONCLUSION: Screening for PTPN11 in patients with congenital hearing loss and variant-based diagnoses are recommended.


Asunto(s)
Pérdida Auditiva Sensorineural/congénito , Síndrome de Noonan/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Adolescente , Animales , Pueblo Asiatico/genética , Niño , Preescolar , Estudios de Cohortes , Femenino , Técnicas de Silenciamiento del Gen , Pérdida Auditiva Sensorineural/complicaciones , Pérdida Auditiva Sensorineural/epidemiología , Humanos , Incidencia , Lactante , Masculino , Ratones , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Pez Cebra , beta Catenina/metabolismo
11.
Sci Rep ; 9(1): 10494, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324869

RESUMEN

There is a strong capacity for hair cell regeneration after damage in the inner ear of non-mammals. However, mammalian hair cells are substantially unable to regenerate. To obtain insights into the mechanism of this difference, we analyzed the transcriptomic changes in the mouse cochleae suffered from gentamicin damage and compared them with those in the chick cochleae suffered from the same damage. The results indicated that 2,230 genes had significantly differential expression between the gentamicin- and saline-treated mouse cochleae. Some of the differentially expressed genes were grouped into 265 signaling pathways, including the Notch, Wnt (Wingless and INT-1), Bmp (bone morphogenetic protein), FGF (fibroblast growth factor) and Shh (sonic hedgehog) pathways. Using pharmacological inhibitors or agonists of these pathways, the effects of these pathways on hair cell regeneration were further studied. The results indicated that Bmp alone and its coregulation with the Notch or Wnt signaling pathways increased the numbers of generated cells from transdifferentiation or proliferation in the mouse cochlea after damage, in addition to the reported coregulation of Notch and Wnt. Thus, this work indicates a new signaling pathway (Bmp) and its synergetic coregulation in mammalian hair cell regeneration, providing potential therapeutic targets to increase mammalian hair cell regeneration.


Asunto(s)
Cóclea/efectos de los fármacos , Gentamicinas/toxicidad , Células Ciliadas Auditivas/metabolismo , Transducción de Señal , Animales , Pollos , Cóclea/metabolismo , Perfilación de la Expresión Génica , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Regeneración
12.
J Assoc Res Otolaryngol ; 20(1): 21-35, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30341698

RESUMEN

A major side effect of aminoglycoside antibiotics is mammalian hair cell death. It is thus intriguing that embryonic chick hair cells treated with aminoglycosides at embryonic day (E) 12 are insensitive to ototoxicity. To exclude some unknown factors in vivo that might be involved in preventing aminoglycoside damage to embryonic hair cells, we first cultured chick embryonic basilar papilla (BP) with an aminoglycoside antibiotic in vitro. The results indicated that the hair cells were almost intact at E12 and E14 and were only moderately damaged in most parts of the BP at E16 and E18. Generally, hair cells residing in the approximate and abneural regions were more susceptible to streptomycin damage. After incubation with gentamicin-conjugated Texas Red (GTTR), which is typically used to trace the entry route of aminoglycosides, GTTR fluorescence was not remarkable in hair cells at E12, was weak at E14, but was relatively strong in the proximal part of BP at E18. This result indicates that the amounts of GTTR that entered the hair cells are related to the degrees of aminoglycoside damage. The study further showed that the fluorescence intensity of GTTR decreased to a low level at E14 to E18 after disruption of mechanotransduction machinery, suggesting that the aminoglycoside entry into hair cells was mainly through mechanotransduction channels. In addition, most of the entered GTTR was not found to be colocalized with mitochondria even at E18. This finding provides another reason to explain why embryonic chick hair cells are insensitive to aminoglycoside damage.


Asunto(s)
Aminoglicósidos/toxicidad , Antibacterianos/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Animales , Embrión de Pollo , Gentamicinas/toxicidad , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/fisiología , Órgano Espiral/efectos de los fármacos , Estreptomicina/toxicidad , Xantenos/farmacocinética
13.
Biomed Res Int ; 2018: 5370802, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29850532

RESUMEN

Hereditary nonsyndromic hearing loss is extremely heterogeneous. Mutations in the POU class 4 transcription factor 3 (POU4F3) are known to cause autosomal dominant nonsyndromic hearing loss linked to the loci of DFNA15. In this study, we describe a pathogenic missense mutation in POU4F3 in a four-generation Chinese family (6126) with midfrequency, progressive, and postlingual autosomal dominant nonsyndromic hearing loss (ADNSHL). By combining targeted capture of 129 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified POU4F3 c.602T>C (p.Leu201Pro) as the disease-causing variant. This variant cosegregated with hearing loss in other family members but was not detected in 580 normal controls or the ExAC database and could be classified as a "pathogenic variant" according to the American College of Medical Genetics and Genomics guidelines. We conclude that POU4F3 c.602T>C (p.Leu201Pro) is related to midfrequency hearing loss in this family. Routine examination of POU4F3 is necessary for the genetic diagnosis of midfrequency hearing loss.


Asunto(s)
Pueblo Asiatico/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de Homeodominio/genética , Mutación Missense/genética , Factor de Transcripción Brn-3C/genética , Adulto , Anciano , Secuencia de Aminoácidos , Secuencia de Bases , Preescolar , Análisis Mutacional de ADN , Familia , Femenino , Proteínas de Homeodominio/química , Humanos , Persona de Mediana Edad , Linaje , Factor de Transcripción Brn-3C/química
14.
Hear Res ; 361: 66-79, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29395614

RESUMEN

Unlike mammalian hair cells, which are essentially unable to regenerate after damage, avian hair cells have a robust capacity for regeneration. The prerequisite for understanding the above difference is knowing the genetic programming of avian hair cell regeneration. Although the major processes have been known, the precise molecular signaling that induces regeneration remains unclear. To address this issue, we performed a high-throughput transcriptomic analysis of gene expression during hair cell regeneration in the chick cochlea after antibiotic injury in vivo. A total of 16,588 genes were found to be expressed in the cochlea, of which about 1000 genes were differentially expressed among the four groups studied, i.e., 2 days (d) or 3 d post-treatment with gentamicin or physiological saline. The differentially expressed genes were distributed across approximately one hundred signaling pathways, including the Notch, MAPK (FGF), Wnt and TGF-ß (BMP) pathways that have been shown to play important roles in embryonic development. Some differentially expressed genes (2-3 in each pathway) were further verified by qRT-PCR. After blocking Notch, FGF or BMP signaling, the number of regenerating hair cells and mitotic supporting cells increased. However, the opposite effect was observed after suppressing the Wnt pathway or enhancing BMP signaling. To our knowledge, the present study provided a relatively complete dataset of candidate genes and signaling pathways most likely involved in hair cell regeneration and should be a useful start in deciphering the genetic circuitry for inducing hair cell regeneration in the chick cochlea.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Factores de Crecimiento de Fibroblastos/genética , Perfilación de la Expresión Génica/métodos , Gentamicinas , Células Ciliadas Auditivas/patología , Trastornos de la Audición/genética , Trastornos de la Audición/patología , Receptores Notch/genética , Regeneración/genética , Transcriptoma , Proteínas Wnt/genética , Animales , Animales Recién Nacidos , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética , Pollos , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/metabolismo , Células Ciliadas Auditivas/metabolismo , Trastornos de la Audición/inducido químicamente , Trastornos de la Audición/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/genética , Técnicas de Cultivo de Tejidos , Proteínas Wnt/metabolismo
15.
J Med Genet ; 55(5): 298-306, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29453195

RESUMEN

Background Hereditary sensorineural hearing loss is a genetically heterogeneous disorder. Objectives This study was designed to explore the genetic etiology of deafness in a large Chinese family with autosomal dominant, nonsyndromic, progressive sensorineural hearing loss (ADNSHL). Methods Whole exome sequencing and linkage analysis were performed to identify pathogenic mutation. Inner ear expression of Ifnlr1 was investigated by immunostaining in mice. ifnlr1 Morpholino knockdown Zebrafish were constructed to explore the deafness mechanism. Results We identified a cosegregating heterozygous missense mutation, c.296G>A (p.Arg99His) in the gene encoding interferon lambda receptor 1 (IFNLR1) - a protein that functions in the Jak/ STAT pathway- are associated with ADNSHL Morpholino knockdown of ifnlr1 leads to a significant decrease in hair cells and non-inflation of the swim bladder in late-stage zebrafish, which can be reversed by injection with normal Zebrafish ifnlr1 mRNA. Knockdown of ifnlr1 in zebrafish causes significant upregulation of cytokine receptor family member b4 (interleukin-10r2), jak1, tyrosine kinase 2, stat3, and stat5b in the Jak1/STAT3 pathway at the mRNA level. ConclusionIFNLR1 function is required in the auditory system and that IFNLR1 mutations are associated with ADNSHL. To the best of our knowledge, this is the first study implicating an interferon lambda receptor in auditory function.


Asunto(s)
Predisposición Genética a la Enfermedad , Pérdida Auditiva Sensorineural/genética , Receptores de Citocinas/genética , Receptores de Interferón/genética , Animales , Técnicas de Silenciamiento del Gen , Ligamiento Genético , Pérdida Auditiva Sensorineural/fisiopatología , Heterocigoto , Humanos , Janus Quinasa 1/genética , Ratones , Morfolinas , Mutación Missense/genética , Factor de Transcripción STAT3/genética , Transducción de Señal , Secuenciación del Exoma , Pez Cebra/genética
16.
Dev Neurobiol ; 78(1): 15-38, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29082632

RESUMEN

Song control nuclei have distinct sexual differences in songbirds. However, the mechanism that underlies the sexual differentiation of song nuclei is still not well understood. Using a combination of anatomical, pharmacological, genetic, and behavioral approaches, the present study investigated the role of erbb2 (a homolog of the avian erythroblastic leukemia viral oncogene homolog 2) and the erbb2-interacting gene, erbin, in the sexual differentiation of the song nucleus HVC in the Bengalese finch. We first found that both erbin and erbb2 were expressed in the developing HVC at posthatch day (PHD) 15 in a male-biased fashion using qRT-PCR and in situ hybridization. Following the addition of a pharmaceutical inhibitor of the ErbB2 signaling pathway to the culture medium, cell proliferation in the cultured ventricle zone (VZ) that overlies the developing HVC decreased significantly. After the injection of erbin- or erbb2-interfering lentiviruses into the HVC and its overlying VZ at PHD 15, the cell proliferation in the VZ at PHD 24, the number of the differentiated neurons (Hu+ /BrdU+ or NeuN+ /BrdU+ ) in the HVC at PHD 31 or PHD 130, and the number of RA-projecting cells at PHD 130 all decreased significantly. Additionally, the adult songs displayed serious abnormalities. Finally, 173 male-biased genes were expressed in the developing HVC at PHD 15 using cDNA microarrays, of which 27.2% were Z-linked genes and approximately 20 genes were involved in the Erbin- or ErbB2-related signaling pathways. Our results provide some specific genetic factors that contribute to neurogenesis and sex differentiation in a song nucleus of songbirds. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 15-38, 2018.


Asunto(s)
Proteínas Aviares/metabolismo , Encéfalo/crecimiento & desarrollo , Pinzones/crecimiento & desarrollo , Receptor ErbB-2/metabolismo , Diferenciación Sexual/fisiología , Vocalización Animal/fisiología , Animales , Proteínas Aviares/antagonistas & inhibidores , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Femenino , Pinzones/anatomía & histología , Pinzones/metabolismo , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Hibridación in Situ , Masculino , Análisis por Micromatrices , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor ErbB-2/antagonistas & inhibidores , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/fisiología , Técnicas de Cultivo de Tejidos
17.
Neural Plast ; 2017: 3192090, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28695016

RESUMEN

Hereditary hearing loss is characterized by a high degree of genetic heterogeneity. Mutations in the TMPRSS3 (transmembrane protease, serine 3) gene cause prelingual (DFNB10) or postlingual (DFNB8) deafness. In our previous study, three pathogenic mutations in TMPRSS3 were identified in one Chinese family. To evaluate the importance of TMPRSS3 mutations in recessive deafness among the Chinese, we screened 150 autosomal recessive nonsyndromic hearing loss (ARNSHL) families and identified 6 that carried seven causative TMPRSS3 mutations, including five novel mutations (c.809T>A, c.1151T>G, c.1204G>A, c.1244T>C, and c.1250G>A) and two previously reported mutations (c.323-6G>A and c.916G>A). Each of the five novel mutations was classified as severe, by both age of onset and severity of hearing loss. Together with our previous study, six families were found to share one pathogenic mutation (c.916G>A, p.Ala306Thr). To determine whether this mutation arose from a common ancestor, we analyzed six short tandem repeat (STR) markers spanning the TMPRSS3 gene. In four families, we observed linkage disequilibrium between p.Ala306Thr and STR markers. Our results indicate that mutations in TMPRSS3 account for about 4.6% (7/151) of Chinese ARNSHL cases lacking mutations in SLC26A4 or GJB2 and that the recurrent TMPRSS3 mutation p.Ala306Thr is likely to be a founder mutation.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Mutación , Proteínas de Neoplasias/genética , Serina Endopeptidasas/genética , Adulto , Edad de Inicio , Niño , Preescolar , China , Análisis Mutacional de ADN , Femenino , Pérdida Auditiva Sensorineural/diagnóstico , Humanos , Recién Nacido , Masculino , Índice de Severidad de la Enfermedad , Adulto Joven
18.
Biomed Res Int ; 2017: 4707315, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28246597

RESUMEN

Autosomal recessive hearing impairment with postlingual onset is rare. Exceptions are caused by mutations in the TMPRSS3 gene, which can lead to prelingual (DFNB10) as well as postlingual deafness (DFNB8). TMPRSS3 mutations can be classified as mild or severe, and the phenotype is dependent on the combination of TMPRSS3 mutations. The combination of two severe mutations leads to profound hearing impairment with a prelingual onset, whereas severe mutations in combination with milder TMPRSS3 mutations lead to a milder phenotype with postlingual onset. We characterized a Chinese family (number FH1523) with not only prelingual but also postlingual hearing impairment. Three mutations in TMPRSS3, one novel mutation c.36delC [p.(Phe13Serfs⁎12)], and two previously reported pathogenic mutations, c.916G>A (p.Ala306Thr) and c.316C>T (p.Arg106Cys), were identified. Compound heterozygous mutations of p.(Phe13Serfs⁎12) and p.Ala306Thr manifest as prelingual, profound hearing impairment in the patient (IV: 1), whereas the combination of p.Arg106Cys and p.Ala306Thr manifests as postlingual, milder hearing impairment in the patient (II: 2, II: 3, II: 5), suggesting that p.Arg106Cys mutation has a milder effect than p.(Phe13Serfs⁎12). We concluded that different combinations of TMPRSS3 mutations led to different hearing impairment phenotypes (DFNB8/DFNB10) in this family.


Asunto(s)
Pueblo Asiatico/genética , Genes Recesivos , Predisposición Genética a la Enfermedad , Pérdida Auditiva/genética , Proteínas de la Membrana/genética , Mutación/genética , Proteínas de Neoplasias/genética , Serina Endopeptidasas/genética , Anciano , Secuencia de Aminoácidos , Audiometría , Secuencia de Bases , Niño , Implantes Cocleares , Secuencia Conservada , Análisis Mutacional de ADN , Sordera/genética , Familia , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Linaje , Fenotipo
19.
BMC Med Genet ; 18(1): 36, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28340560

RESUMEN

BACKGROUND: Hereditary non-syndromic hearing loss is the most common inherited sensory defect in humans. The KCNQ4 channel belongs to a family of potassium ion channels that play crucial roles in physiology and disease. Mutations in KCNQ4 underlie deafness non-syndromic autosomal dominant 2, a subtype of autosomal dominant, progressive, high-frequency hearing loss. METHODS: A six-generation Chinese family from Hebei Province with autosomal dominantly inherited, sensorineural, postlingual, progressive hearing loss was enrolled in this study. Mutation screening of 129 genes associated with hearing loss was performed in five family members by next-generation sequencing (NGS). We also carried out variant analysis on DNA from 531 Chinese individuals with normal hearing as controls. RESULTS: This family exhibits postlingual, progressive, symmetrical, bilateral, non-syndromic sensorineural hearing loss. NGS, bioinformatic analysis, and Sanger sequencing confirmed the co-segregation of a novel mutation [c.887G > A (p.G296D)] in KCNQ4 with the disease phenotype in this family. This mutation leads to a glycine-to-aspartic acid substitution at position 296 in the pore region of the KCNQ4 channel. This mutation affects a highly conserved glutamic acid. NGS is a highly efficient tool for identifying gene mutations causing heritable disease. CONCLUSIONS: Progressive hearing loss is common in individuals with KCNQ4 mutations. NGS together with Sanger sequencing confirmed that the five affected members of this Chinese family inherited a missense mutation, c.887G > A (p.G296D), in exon 6 of KCNQ4. Our results increase the number of identified KCNQ4 mutations.


Asunto(s)
Pueblo Asiatico/genética , Pérdida Auditiva/genética , Canales de Potasio KCNQ/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Umbral Auditivo , Secuencia de Bases , Estudios de Casos y Controles , China , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Análisis Mutacional de ADN , Femenino , Pérdida Auditiva/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Datos de Secuencia Molecular , Mutación Missense , Linaje , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Adulto Joven
20.
Hear Res ; 332: 17-28, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26688175

RESUMEN

Hair cells in posthatch chickens regenerate spontaneously through mitosis or the transdifferentiation of supporting cells in response to antibiotic injury. However, how embryonic chicken cochleae respond to antibiotic treatment remains unknown. This study is the first to indicate that unlike hair cells in posthatch chickens, the auditory epithelium was free from antibiotic injury (25-250 mg gentamicin/kg) in embryonic chickens, although FITC-conjugated gentamicin actually reached embryonic hair cells. Next, we examined and counted the cells and performed labeling for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) (triple or double labeling) in the injured cochlea ducts after gentamicin treatment at 2 h (h), 15 h, 24 h, 2 days (d), 3 d and 7 d after BrdU treatment in posthatch chickens. Our results indicated that following gentamicin administration, proliferating cells (BrdU+) were labeled for Atoh1/Math1 in the damaged areas 3d after gentamicin administration, whereas hair cells (PV+) renewed through mitosis (BrdU+) or direct transdifferentiation (BrdU-) were evident only after 5 d of gentamicin administration. In addition, Sox2 expression was up-regulated in triggered supporting cells at an early stage of regeneration, but stopped at the advent of mature hair cells. Our study also indicated that p27(kip1) was expressed in both hair cells and supporting cells but was down-regulated in a subgroup of the supporting cells that gave rise to hair cells. These data and the obtained dynamic changes of the cells labeled for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) are useful for understanding supporting cell behaviors and their fate specification during hair cell regeneration.


Asunto(s)
Antibacterianos/toxicidad , Linaje de la Célula/efectos de los fármacos , Transdiferenciación Celular/efectos de los fármacos , Conducto Coclear/efectos de los fármacos , Gentamicinas/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Células Laberínticas de Soporte/efectos de los fármacos , Regeneración/efectos de los fármacos , Factores de Edad , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Embrión de Pollo , Pollos , Conducto Coclear/embriología , Conducto Coclear/metabolismo , Conducto Coclear/patología , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Mitosis/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA