Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Chromatogr A ; 1736: 465368, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39298927

RESUMEN

Histone post-translational modifications (PTMs) are critical epigenetic regulatory factors. Histone PTMs are highly dynamic and complicated, encompassing over 30 structurally diverse modifications across nearly 180 amino acid residues, which generated extensive information regarding histone marks. In proteomics-based characterization of histone PTMs, chemical derivatization and antibody-based affinity enrichment were frequently utilized to improve the identification depth. However, chemical derivatization suffered from the occurrence of side reactions, and antibody-based affinity enrichment focused on specific PTM types of interest. In this research, we developed a multi-step fractionation strategy for comprehensively unbiased detection of histone PTM sites. By combining protein-level fractionation with peptide-level alkaline and acid phase fractionation, we developed the Multidimensional Fractionation based Histone Mark Identification Technology (MudFIT) and increased PTM identification to a total of 264 histone PTM sites. To the best of our knowledge, this strategy achieved the most comprehensive characterization of histone PTM sites in a single proteomics study. Using the same starting amount of sample, MudFIT identified more Kac sites and Kac peptides than those in antibody-based acetylated peptide enrichment. Moreover, in addition to well-studied histone marks, we discovered 36 potential new histone PTM sites including H2BK116bu, H4R45me2, H1K63pr, and uncovered unknown histone PTM types like aminoadipic on lysine and nitrosylation on tyrosine. Our data provided a method and resource for in-depth characterization of histone PTM sites, facilitating further biological understanding of histone marks.

2.
Brain Behav Immun ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303815

RESUMEN

As an adjunct therapy, metformin enhances the efficacy of conventional antidepressant medications. However, its mode of action remains unclear. Here, metformin was found to ameliorate depression-like behaviors in mice exposed to chronic restraint stress (CRS) by normalizing the dysbiotic gut microbiome. Fecal transplants from metformin-treated mice ameliorated depressive behaviors in stressed mice. Microbiome profiling revealed that Akkermansia muciniphila (A. muciniphila), in particular, was markedly increased in the gut by metformin and that oral administration of this species alone was sufficient to reverse CRS-induced depressive behaviors and normalize aberrant stress-induced 5-hydroxytryptamine (5-HT) metabolism in the brain and gut. Untargeted metabolomic profiling further identified the bile acid metabolites taurocholate and deoxycholic acid as direct A. muciniphila-derived molecules that are, individually, sufficient to rescue the CRS-induced impaired 5-HT metabolism and depression-like behaviors. Thus, we report metformin reprograms 5-HT metabolism via microbiome-brain interactions to mitigate depressive syndromes, providing novel insights into gut microbiota-derived bile acids as potential therapeutic candidates for depressive mood disorders from bench to bedside.

3.
Nat Cancer ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242942

RESUMEN

Prostate cancer (PCa) exhibits significant geoethnic disparities as reflected by distinct variations in the cancer genome and disease progression. Here, we perform a comprehensive proteogenomic characterization of localized high-risk PCa utilizing paired tumors and nearby tissues from 125 Chinese male patients, with the primary objectives of identifying potential biomarkers, unraveling critical oncogenic events and delineating molecular subtypes with poor prognosis. Our integrated analysis highlights the utility of GOLM1 as a noninvasive serum biomarker. Phosphoproteomics analysis reveals the crucial role of Ser331 phosphorylation on FOXA1 in regulating FOXA1-AR-dependent cistrome. Notably, our proteomic profiling identifies three distinct subtypes, with metabolic immune-desert tumors (S-III) emerging as a particularly aggressive subtype linked to poor prognosis and BCAT2 catabolism-driven PCa progression. In summary, our study provides a comprehensive resource detailing the unique proteomic and phosphoproteomic characteristics of PCa molecular pathogenesis and offering valuable insights for the development of diagnostic and therapeutic strategies.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39230208

RESUMEN

The objective of this phase 1 single-dose study was to evaluate the safety, tolerability, and pharmacokinetics of mirikizumab in Chinese healthy adults. Sixty participants were randomized within 5 planned dose cohorts: intravenous (IV) 300 mg, IV 600 mg, IV 1200 mg, subcutaneous (SC) 200 mg, and SC 400 mg to receive mirikizumab (10 participants in each cohort) or placebo (2 participants in each cohort). No death or serious adverse events occurred. Twenty-eight (56.0%) participants who received mirikizumab reported 49 treatment-emergent adverse events (TEAEs) and 8 (80.0%) participants who received placebo reported 18 TEAEs. The majority of TEAEs were mild in severity. Following IV 300-1200 mg mirikizumab, the arithmetic mean of both area under the concentration versus time curve from time 0 to infinity (AUC0-∞) and maximum observed drug concentration (Cmax) increased by approximately 3.5-fold, and the arithmetic mean half-life (t1/2) ranged from 9.64 to 12.0 days. Following SC 200 and 400 mg mirikizumab, the arithmetic mean of both AUC0-∞ and Cmax increased by approximately 1.6-fold, the median time to Cmax (tmax) was 2.98 days for both, and the arithmetic mean t1/2 was 10.6 and 10.5 days, respectively. Absolute bioavailability based on pooled SC and IV dose data was 38.2%. In this study, the safety and pharmacokinetic profile of mirikizumab were consistent with what has been reported in other studies.

5.
Neurosci Bull ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207622

RESUMEN

Anxiety disorder is a major symptom of autism spectrum disorder (ASD) with a comorbidity rate of ~40%. However, the neural mechanisms of the emergence of anxiety in ASD remain unclear. In our study, we found that hyperactivity of basolateral amygdala (BLA) pyramidal neurons (PNs) in Shank3 InsG3680 knock-in (InsG3680+/+) mice is involved in the development of anxiety. Electrophysiological results also showed increased excitatory input and decreased inhibitory input in BLA PNs. Chemogenetic inhibition of the excitability of PNs in the BLA rescued the anxiety phenotype of InsG3680+/+ mice. Further study found that the diminished control of the BLA by medial prefrontal cortex (mPFC) and optogenetic activation of the mPFC-BLA pathway also had a rescue effect, which increased the feedforward inhibition of the BLA. Taken together, our results suggest that hyperactivity of the BLA and alteration of the mPFC-BLA circuitry are involved in anxiety in InsG3680+/+ mice.

6.
Front Immunol ; 15: 1390516, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044823

RESUMEN

Background: The role of autoimmune diseases (ADs) in temporomandibular disorders (TMDs) has been emphasized in observational studies. However, whether the causation exists is unclear, and controversy remains about which specific disorder is destructive in TMDs. This Mendelian randomization (MR) study aims to estimate the causal effect of common ADs on TMDs. Methods: Genetic data from published genome-wide association studies for fourteen common ADs, specifically multiple sclerosis (MS, N = 15,283), ankylosing spondylitis (AS, N = 22,647), asthma (N = 408,422), celiac disease (N = 15,283), Graves' disease (N = 458,620), Hashimoto thyroiditis (N = 395,640), primary biliary cirrhosis (PBC, N = 11,375), primary sclerosing cholangitis (PSC, N = 14,890), psoriasis vulgaris (N = 483,174), rheumatoid arthritis (RA, N = 417,256), systemic lupus erythematosus (SLE, N = 23,210), Type 1 diabetes (T1D, N = 520,580), inflammatory bowel disease (IBD, N = 34,652), and Sjogren's syndrome (SS, N = 407,746) were collected. Additionally, the latest summary-level data for TMDs (N = 228,812) were extracted from the FinnGen database. The overall effects of each immune traits were assessed via inverse-variance weighted (IVW), weighted median, and MR-Egger methods, and performed extensive sensitivity analyses. Finally, 731 immune cell phenotypes (N = 3,757) were analyzed for their mediating role in the significant causality. Results: Univariable MR analyses revealed that genetically predicted RA (IVW OR: 1.12, 95% CI: 1.05-1.19, p < 0.001) and MS (IVW OR: 1.06, 95% CI: 1.03-1.10, p = 0.001) were associated with increased risk of TMDs. Two out of 731 immune cell phenotypes were identified as causal mediators in the associations of RA with TMDs, including "CD25++ CD8+ T cell % CD8+ T cell" (mediation proportion: 6.2%) and "CD3 on activated CD4 regulatory T cell" (5.4%). Additionally, "CD127 on granulocyte" mediated 10.6% of the total effect of MS on TMDs. No reverse directions, heterogeneity, and pleiotropy were detected in the analyses (p > 0.05). Conclusion: This MR study provides new evidence regarding the causal impact of genetic predisposition to RA or MS on the increased risk of TMDs, potentially mediated by the modulation of immune cells. These findings highlight the importance for clinicians to pay more attention to patients with RA or MS when consulting for temporomandibular discomfort. The mediating role of specific immune cells is proposed but needs further investigation.


Asunto(s)
Enfermedades Autoinmunes , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Trastornos de la Articulación Temporomandibular , Humanos , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/etiología , Trastornos de la Articulación Temporomandibular/genética , Trastornos de la Articulación Temporomandibular/etiología , Trastornos de la Articulación Temporomandibular/inmunología , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
7.
Artículo en Inglés | MEDLINE | ID: mdl-39031849

RESUMEN

GLS4 is a first-in-class hepatitis B virus (HBV) capsid assembly modulator (class I) that is co-administered with ritonavir to maintain the anticipated concentration required for the effective antiviral activity of GLS4. In this study, the first physiologically-based pharmacokinetic (PBPK) model for GLS4/ritonavir was successfully developed. The predictive performance of the PBPK model was verified using data from 39 clinical studies, including single-dose, multiple-dose, food effects, and drug-drug interactions (DDI). The PBPK model accurately described the PK profiles of GLS4 and ritonavir, with predicted values closely aligning with observed data. Based on the verified GLS4/ritonavir model, it prospectively predicts the effect of hepatic impairment (HI) and DDI on its pharmacokinetics (PK). Notably, CYP3A4 inducers significantly influenced GLS4 exposure when co-administered with ritonavir; co-administered GLS4 and ritonavir significantly influenced the exposure of CYP3A4 substrates. Additionally, with the severity of HI increased, there was a corresponding increase in the exposure to GLS4 when co-administered with ritonavir. The GLS4/ritonavir PBPK model can potentially be used as an alternative to clinical studies or guide the design of clinical trial protocols.

8.
BMC Oral Health ; 24(1): 788, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003475

RESUMEN

BACKGROUND: The epigenetic-age acceleration (EAA) represents the difference between chronological age and epigenetic age, reflecting accelerated biological aging. Observational studies suggested that oral disorders may impact DNA methylation patterns and aging, but their causal relationship remains largely unexplored. This study aimed to investigate potential causal associations between dental traits and EAA, as well as to identify possible mediators. METHODS: Using summary statistics of genome-wide association studies of predominantly European ancestry, we conducted univariable and multivariable Mendelian randomization (MR) to estimate the overall and independent effects of ten dental traits (dentures, bleeding gums, painful gums, loose teeth, toothache, ulcers, periodontitis, number of teeth, and two measures of caries) on four EAA subtypes (GrimAge acceleration [GrimAA], PhenoAge acceleration [PhenoAA], HannumAge acceleration [HannumAA] and intrinsic EAA [IEAA]), and used two-step Mendelian randomization to evaluate twelve potential mediators of the associations. Comprehensive sensitivity analyses were used to verity the robustness, heterogeneity, and pleiotropy. RESULTS: Univariable inverse variance weighted MR analyses revealed a causal effect of dentures on greater GrimAA (ß: 2.47, 95% CI: 0.93-4.01, p = 0.002), PhenoAA (ß: 3.00, 95% CI: 1.15-4.85, p = 0.001), and HannumAA (ß: 1.96, 95% CI: 0.58-3.33, p = 0.005). In multivariable MR, the associations remained significant after adjusting for periodontitis, caries, number of teeth and bleeding gums. Three out of 12 aging risk factors were identified as mediators of the association between dentures and EAA, including body mass index, body fat percentage, and waist circumference. No evidence for reverse causality and pleiotropy were detected (p > 0.05). CONCLUSIONS: Our findings supported the causal effects of genetic liability for denture wearing on epigenetic aging, with partial mediation by obesity. More attention should be paid to the obesity-monitoring and management for slowing EAA among denture wearers.


Asunto(s)
Envejecimiento , Dentaduras , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Humanos , Dentaduras/efectos adversos , Envejecimiento/genética
9.
Cranio ; : 1-10, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075864

RESUMEN

OBJECTIVE: This study aimed to investigate the potential genetic link between sleep traits and periodontitis. METHODS: A two-sample bidirectional Mendelian randomization (MR) analysis was conducted using publicly available genome-wide association studies data on chronotype, daytime sleepiness, daytime napping frequency, insomnia, sleep duration, snoring, and the apnea-hypopnea index (AHI), along with a separate dataset on periodontitis. RESULTS: Chronotype (OR = 0.929, 95% CI = 0.788-1.095), daytime sleepiness (OR = 0.492, 95% CI = 0.186-1.306), daytime napping frequency (OR = 1.178, 95% CI = 0.745-1.863), sleep duration (OR = 0.868, 95% CI = 0.644-1.169), AHI (OR = 1.124, 95% CI = 0.980-1.289), insomnia (OR = 0.832, 95% CI = 0.440-1.573), and snoring (OR = 0.641, 95% CI = 0.198-2.075) had no effect on periodontitis. Similarly, periodontitis demonstrated no significant effect on sleep traits. CONCLUSIONS: There is no evidence of a bidirectional genetic relationship between sleep traits and the risk of periodontitis.

11.
Molecules ; 29(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930857

RESUMEN

A straightforward and efficient methodology has been developed for the synthesis of 3-cyano-2-pyridones via the C-C and C-N bond formation processes. A total of 51 diverse 3-cyano-2-pyridone derivatives were obtained in moderate to excellent yields. This reaction featured advantages such as a metal-free process, wide functional group tolerance, simple operation, and mild conditions. A plausible mechanism for the reaction was proposed. 3-cyano-2-pyridones as ricinine analogues for insecticidal properties were evaluated, and the compound 3ci (LC50 = 2.206 mg/mL) showed the best insecticidal property.

12.
J Proteomics ; 300: 105177, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38631426

RESUMEN

Tuberculosis (TB) is a serious cause of infectious death worldwide. Recent studies have reported that about 30% of the Mtb proteome was modified post-translationally, indicating that their functions are essential for drug resistance, mycobacterial survival, and pathogenicity. Among them, lysine acetylation, reversibly regulated by acetyltransferase and deacetylase, has important roles involved in energy metabolism, cellular adaptation, and protein interactions. However, the substrate and biological functions of these two important regulatory enzymes remain unclear. Herein, we utilized the non-pathogenic M. smegmatis strain as a model and systematically investigated the dynamic proteome changes in response to the overexpressing of MsKat/MsCobB in mycobacteria. A total of 4179 proteins and 1236 acetylated sites were identified in our data. Further analysis of the dynamic changes involved in proteome and acetylome showed that MsKat/MsCobB played a regulatory role in various metabolic pathways and nucleic acid processes. After that, the quantitative mass spectrometric method was utilized and proved that the AMP-dependent synthetase, Citrate synthase, ATP-dependent specificity component of the Clp protease, and ATP-dependent DNA/RNA helicases were identified to be the substrates of MsKat. Overall, our study provided an important resource underlying the substrates and functions of the acetylation regulatory enzymes in mycobacteria. SIGNIFICANCE: In this study, we systematically analyzed the dynamic molecular changes in response to the MsKat/MsCobB overexpression in mycobacteria at proteome and lysine acetylation level by using a TMT-based quantitative proteomic approach. Pathways related with glycolysis, degradation of branched chain amino acids, phosphotransferase system were affected after disturbance of the two regulates enzymes involved in lysine acetylation. We also proved that AMP-dependent synthetase Clp protease, ATP-dependent DNA/RNA helicases and citrate synthase was the substrate of MsKat according to our proteomic data and biological validation. Together, our study underlined the substrates and functions of the acetylation regulatory enzymes in mycobacteria.


Asunto(s)
Proteínas Bacterianas , Lisina Acetiltransferasas , Mycobacterium smegmatis , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo , Proteínas Bacterianas/metabolismo , Lisina Acetiltransferasas/metabolismo , Acetilación , Proteoma/metabolismo , Especificidad por Sustrato , Lisina/metabolismo
13.
Clin Nucl Med ; 49(9): e457-e458, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38620003

RESUMEN

ABSTRACT: We report 18 F-FDG PET/CT appearances of intracholecystic papillary neoplasm (ICPN) in the gallbladder neck and duct of a 74-year-old woman with a history of hepatitis B cirrhosis. The lesion presented with a large and sessile soft mass in the neck and duct of gallbladder with obvious glucose metabolism on PET/CT images, which was confirmed pathologically as ICPN (gastric foveolar type) with high-grade intraepithelial neoplasia. ICPN localized in the gallbladder neck and duct is extremely rare, and is easily misdiagnosed as gallbladder carcinoma. Our report aids in the application of PET/CT in the differential diagnosis of ICPN and guiding early surgery.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Femenino , Anciano , Tomografía Computarizada por Rayos X , Carcinoma Papilar/diagnóstico por imagen , Imagen Multimodal
14.
Mol Psychiatry ; 29(8): 2308-2320, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38459194

RESUMEN

Cognitive and behavioral rigidity are observed in various psychiatric diseases, including in autism spectrum disorder (ASD). However, the underlying mechanism remains to be elucidated. In this study, we found that neuroligin-3 (NL3) R451C knockin mouse model of autism (KI mice) exhibited deficits in behavioral flexibility in choice selection tasks. Single-unit recording of medium spiny neuron (MSN) activity in the nucleus accumbens (NAc) revealed altered encoding of decision-related cue and impaired updating of choice anticipation in KI mice. Additionally, fiber photometry demonstrated significant disruption in dynamic mesolimbic dopamine (DA) signaling for reward prediction errors (RPEs), along with reduced activity in medial prefrontal cortex (mPFC) neurons projecting to the NAc in KI mice. Interestingly, NL3 re-expression in the mPFC, but not in the NAc, rescued the deficit of flexible behaviors and simultaneously restored NAc-MSN encoding, DA dynamics, and mPFC-NAc output in KI mice. Taken together, this study reveals the frontostriatal circuit dysfunction underlying cognitive inflexibility and establishes a critical role of the mPFC NL3 deficiency in this deficit in KI mice. Therefore, these findings provide new insights into the mechanisms of cognitive and behavioral inflexibility and potential intervention strategies.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Cognición , Modelos Animales de Enfermedad , Dopamina , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Núcleo Accumbens , Corteza Prefrontal , Animales , Ratones , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Núcleo Accumbens/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Masculino , Dopamina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Cognición/fisiología , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Neuronas/metabolismo , Recompensa , Cuerpo Estriado/metabolismo , Técnicas de Sustitución del Gen/métodos , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Trastorno Autístico/metabolismo , Ratones Endogámicos C57BL , Conducta de Elección/fisiología
15.
MedComm (2020) ; 5(4): e469, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525108

RESUMEN

Motor proteins, encoded by Kinesin superfamily (KIF) genes, are critical for brain development and plasticity. Increasing studies reported KIF's roles in neurodevelopmental disorders. Here, a 6 years and 3 months-old Chinese boy with markedly symptomatic epilepsy, intellectual disability, brain atrophy, and psychomotor retardation was investigated. His parents and younger sister were phenotypically normal and had no disease-related family history. Whole exome sequencing identified a novel heterozygous in-frame deletion (c.265_267delTCA) in exon 3 of the KIF5C in the proband, resulting in the removal of evolutionarily highly conserved p.Ser90, located in its ATP-binding domain. Sanger sequencing excluded the proband's parents and family members from harboring this variant. The activity of ATP hydrolysis in vitro was significantly reduced as predicted. Immunofluorescence studies showed wild-type KIF5C was widely distributed throughout the cytoplasm, while mutant KIF5C was colocalized with microtubules. The live-cell imaging of the cargo-trafficking assay revealed that mutant KIF5C lost the peroxisome-transporting ability. Drosophila models also confirmed p.Ser90del's essential role in nervous system development. This study emphasized the importance of the KIF5C gene in intracellular cargo-transport as well as germline variants that lead to neurodevelopmental disorders and might enable clinicians for timely and accurate diagnosis and disease management in the future.

16.
Curr Mol Pharmacol ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38485683

RESUMEN

BACKGROUND: While chemotherapy treatment demonstrates its initial effectiveness in eliminating the majority of the tumor cell population, nevertheless, most patients relapse and eventually succumb to the disease upon its recurrence. One promising approach is to explore novel, effective chemotherapeutic adjuvants to enhance the sensitivity of cancer cells to conventional chemotherapeutic agents. In the present study, we explored the effect of quercetin on the sensitivity of colorectal cancer (CRC) cells to conventional chemotherapeutic agent 5-fluorouracil (5-FU) and the molecular mechanisms. METHODS: MTT assay, colony formation assay and Hoechst staining were performed to investigate the growth inhibition effect of quercetin alone or combined with 5-FU. The expression levels of apoptosis- and autophagy-related proteins were assessed by western blotting. Intracellular ROS was detected using DCFH-DA. The change in the mitochondrial membrane potential was measured by a JC-1 probe. The effect of quercetin on mitochondrial morphology was examined using a mitochondrial-specific fluorescence probe, Mito-Tracker red. RESULTS: The results demonstrated quercetin-induced apoptosis and autophagy, as well as imbalanced ROS, decreased mitochondrial membrane potential, and Drp-1-mediated mitochondrial fission in CRC cells. Autophagy blockage with autophagy inhibitor chloroquine (CQ) enhanced quercetininduced cytotoxicity, indicating that quercetin-induced cytoprotective autophagy. Meanwhile, quercetin enhanced the sensitivity of CRC cells to 5- FU via the induction of mitochondrial fragmentation, which could be further enhanced when the quercetin-induced protective autophagy was blocked by CQ. CONCLUSION: Our findings suggested that quercetin could induce protective autophagy and Drp-1-mediated mitochondrial fragmentation and enhance the sensitivity of CRC cells to conventional agent 5-FU, which not only suggests that quercetin may act as a chemotherapeutic adjuvant but also implies that the regulation of autophagic flux may be a potential therapeutic strategy for colorectal cancer.

17.
Proteomics ; : e2300350, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491406

RESUMEN

Lysine acylation has been extensively investigated due to its regulatory role in a diverse range of biological functions across prokaryotic and eukaryotic species. In-depth acylomic profiles have the potential to enhance comprehension of the biological implications of organisms. However, the extent of research on global acylation profiles in microorganisms is limited. Here, four lysine acylomes were conducted in Bacillus thuringiensis by using the LC-MS/MS based proteomics combined with antibody-enrichment strategies, and a total of 3438 acetylated sites, 5797 propionylated sites, 1705 succinylated sites, and 925 malonylated sites were identified. The motif analysis of these modified proteins revealed a high conservation of glutamate in acetylation and propionylation, whereas such conservation was not observed in succinylation and malonylation modifications. Besides, conservation analysis showed that homologous acylated proteins in Bacillus subtilis and Escherichia coli were connected with ribosome and aminoacyl-tRNA biosynthesis. Further biological experiments showed that lysine acylation lowered the RNA binding ability of CodY and impaired the in vivo protein activity of MetK. In conclusion, our study expanded the current understanding of the global acylation in Bacillus, and the comparative analysis demonstrated that shared acylation proteins could play important roles in regulating both metabolism and RNA transcription progression.

18.
Acta Pharmacol Sin ; 45(6): 1305-1315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38383757

RESUMEN

Histone deacetylase inhibitors (HDACis) are important drugs for cancer therapy, but the indistinct resistant mechanisms of solid tumor therapy greatly limit their clinical application. In this study we conducted HDACi-perturbated proteomics and phosphoproteomics analyses in HDACi-sensitive and -resistant cell lines using a tandem mass tag (TMT)-based quantitative proteomic strategy. We found that the ribosome biogenesis proteins MRTO4, PES1, WDR74 and NOP16 vital to tumorigenesis might regulate the tumor sensitivity to HDACi. By integrating HDACi-perturbated protein signature with previously reported proteomics and drug sensitivity data, we predicted and validated a series of drug combination pairs potentially to enhance the sensitivity of HDACi in diverse solid tumor. Functional phosphoproteomic analysis further identified the kinase PDK1 and ROCK as potential HDACi-resistant signatures. Overall, this study reveals the potential HDACi-resistant signatures and may provide promising drug combination strategies to attenuate the resistance of solid tumor to HDACi.


Asunto(s)
Resistencia a Antineoplásicos , Inhibidores de Histona Desacetilasas , Neoplasias , Proteómica , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
19.
J Pharm Anal ; 14(1): 128-139, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38352953

RESUMEN

Pharmacological perturbation studies based on protein-level signatures are fundamental for drug discovery. In the present study, we used a mass spectrometry (MS)-based proteomic platform to profile the whole proteome of the breast cancer MCF7 cell line under stress induced by 78 bioactive compounds. The integrated analysis of perturbed signal abundance revealed the connectivity between phenotypic behaviors and molecular features in cancer cells. Our data showed functional relevance in exploring the novel pharmacological activity of phenolic xanthohumol, as well as the noncanonical targets of clinically approved tamoxifen, lovastatin, and their derivatives. Furthermore, the rational design of synergistic inhibition using a combination of histone methyltransferase and topoisomerase was identified based on their complementary drug fingerprints. This study provides rich resources for the proteomic landscape of drug responses for precision therapeutic medicine.

20.
Sci Transl Med ; 16(733): eade8647, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324636

RESUMEN

Impeded autophagy can impair pancreatic ß cell function by causing apoptosis, of which DAP-related apoptosis-inducing kinase-2 (DRAK2) is a critical regulator. Here, we identified a marked up-regulation of DRAK2 in pancreatic tissue across humans, macaques, and mice with type 2 diabetes (T2D). Further studies in mice showed that conditional knockout (cKO) of DRAK2 in pancreatic ß cells protected ß cell function against high-fat diet feeding along with sustained autophagy and mitochondrial function. Phosphoproteome analysis in isolated mouse primary islets revealed that DRAK2 directly phosphorylated unc-51-like autophagy activating kinase 1 (ULK1) at Ser56, which was subsequently found to induce ULK1 ubiquitylation and suppress autophagy. ULK1-S56A mutation or pharmacological inhibition of DRAK2 preserved mitochondrial function and insulin secretion against lipotoxicity in mouse primary islets, Min6 cells, or INS-1E cells. In conclusion, these findings together indicate an indispensable role of the DRAK2-ULK1 axis in pancreatic ß cells upon metabolic challenge, which offers a potential target to protect ß cell function in T2D.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Homólogo de la Proteína 1 Relacionada con la Autofagia , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Hipernutrición , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Ratones , Apoptosis , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA