Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Nat Commun ; 15(1): 3520, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664402

The root-associated microbiota plays an important role in the response to environmental stress. However, the underlying mechanisms controlling the interaction between salt-stressed plants and microbiota are poorly understood. Here, by focusing on a salt-tolerant plant wild soybean (Glycine soja), we demonstrate that highly conserved microbes dominated by Pseudomonas are enriched in the root and rhizosphere microbiota of salt-stressed plant. Two corresponding Pseudomonas isolates are confirmed to enhance the salt tolerance of wild soybean. Shotgun metagenomic and metatranscriptomic sequencing reveal that motility-associated genes, mainly chemotaxis and flagellar assembly, are significantly enriched and expressed in salt-treated samples. We further find that roots of salt stressed plants secreted purines, especially xanthine, which induce motility of the Pseudomonas isolates. Moreover, exogenous application for xanthine to non-stressed plants results in Pseudomonas enrichment, reproducing the microbiota shift in salt-stressed root. Finally, Pseudomonas mutant analysis shows that the motility related gene cheW is required for chemotaxis toward xanthine and for enhancing plant salt tolerance. Our study proposes that wild soybean recruits beneficial Pseudomonas species by exudating key metabolites (i.e., purine) against salt stress.


Glycine max , Plant Roots , Pseudomonas , Rhizosphere , Pseudomonas/genetics , Pseudomonas/metabolism , Glycine max/microbiology , Glycine max/metabolism , Glycine max/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Microbiota/drug effects , Purines/metabolism , Purines/pharmacology , Salt Stress/genetics , Chemotaxis/genetics , Salt Tolerance/genetics , Soil Microbiology , Xanthine/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
2.
J Agric Food Chem ; 71(51): 20713-20723, 2023 Dec 27.
Article En | MEDLINE | ID: mdl-38095326

Two new terrein derivatives, aspergilethers A and B (1 and 2), two known analogues (3 and 4), and three known butenolides (5-7) were isolated from the endophyte Aspergillus terreus HT5. Their structures were determined by spectroscopic analysis and ECD and NMR calculations. Interestingly, 1 and 2 had unpresented medium aliphatic side chains in terrein derivatives, with different absolute configurations at C-7, which was very scarce. (+)-Terrein (3) exhibited potent postemergence phytotoxicity toward Amaranthaceae, Portulacaceae, and Fabaceae, with MIC values of 250-1000 µg/mL. Transcriptome analysis and qRT-PCR suggested that (+)-terrein induced the transcriptional expression of aging-related genes to accelerate organ senescence and stimulated plant detoxification response. The conjugated system between keto carbonyl and double bonds in the cyclopentenone ring and side chain, and the configurations of C-2 and C-3, played critical roles in the phytotoxicity of terrein derivatives. Meanwhile, 3 was first reported to display moderate antioomycetes activity toward Phytophthora nicotiana.


Anti-Infective Agents , Toxins, Biological , Aspergillus/metabolism , Anti-Infective Agents/metabolism , Toxins, Biological/metabolism , Molecular Structure
3.
NPJ Biofilms Microbiomes ; 8(1): 97, 2022 12 16.
Article En | MEDLINE | ID: mdl-36526637

The ubiquitous Wsp (wrinkly spreader phenotype) chemosensory system and DSF (diffusible signal factor) quorum sensing are two important chemically associated signaling systems that mediate bacterial communications between the host and environment. Although these two systems individually control biofilm formation in pathogenic bacteria via the ubiquitous second messenger c-di-GMP, their crosstalk mechanisms remain elusive. Here we present a scenario from the plant-beneficial and antifungal bacterium Lysobacter enzymogenes OH11, where biofilm formation favors the colonization of this bacterium in fungal hyphae. We found that the Wsp system regulated biofilm formation via WspR-mediated c-di-GMP signaling, whereas DSF system did not depend on the enzymatic activity of RpfG to regulate biofilm formation. We further found that WspR, a diguanylate cyclase (DGC) responsible for c-di-GMP synthesis, could directly bind to one of the DSF signaling components, RpfG, an active phosphodiesterase (PDE) responsible for c-di-GMP degradation. Thus, the WspR-RpfG complex represents a previously undiscovered molecular linker connecting the Wsp and DSF systems. Mechanistically, RpfG could function as an adaptor protein to bind and inhibit the DGC activity of unphosphorylated WspR independent of its PDE activity. Phosphorylation of WspR impaired its binding affinity to RpfG and also blocked the ability of RpfG to act as an adaptor protein, which enabled the Wsp system to regulate biofilm formation in a c-di-GMP-dependent manner by dynamically integrating the DSF system. Our findings demonstrated a previously uncharacterized mechanism of crosstalk between Wsp and DSF systems in plant-beneficial and antifungal bacteria.


Lysobacter , Quorum Sensing , Antifungal Agents , Biofilms
4.
Comput Struct Biotechnol J ; 19: 3564-3572, 2021.
Article En | MEDLINE | ID: mdl-34257836

Cyclic AMP receptor protein (CRP) is a well-characterized group of global transcription factors in bacteria. They are known to regulate numerous cellular processes by binding DNA and/or cAMP (a ligand called bacterial second messenger) to control target gene expression. Gram-negative Lysobacter enzymogenes is a soilborne, plant-beneficial bacterium without flagella that can fight against filamentous fungi and oomycete. Driven by the type IV pilus (T4P) system, this bacterium moves to nearby pathogens and uses a "mobile-attack" antifungal strategy to kill them via heat-stable antifungal factor (HSAF) and abundant lyases. This strategy is controlled by a unique "busy" transcription factor Clp, which is a CRP-like protein that is inactivated by binding of c-di-GMP, another ubiquitous second messenger of bacteria. In this review, we summarize the current progress in how Clp initiates a "mobile-attack" strategy through a series of previously uncharacterized mechanisms, including binding to DNA in a unique pattern, directly interacting with or responding to various small molecules, and interacting specifically with proteins adopting distinct structure. Together, these characteristics highlight the multifunctional roles of Clp in L. enzymogenes, a powerful bacterial warrior against fungal pathogens.

5.
Environ Microbiol ; 23(10): 5704-5715, 2021 10.
Article En | MEDLINE | ID: mdl-34288318

Bacteria interact with fungi in a variety of ways to inhibit fungal growth, while the underlying mechanisms remain only partially characterized. The plant-beneficial Bacillus and Pseudomonas species are well-known antifungal biocontrol agents, whereas Lysobacter are far less studied. Members of Lysobacter are easy to grow in fermenters and are safe to humans, animals and plants. These environmentally ubiquitous bacteria use a diverse arsenal of weapons to prey on other microorganisms, including fungi and oomycetes. The small molecular toxins secreted by Lysobacter represent long-range weapons effective against filamentous fungi. The secreted hydrolytic enzymes act as intermediate-range weapons against non-filamentous fungi. The contact-dependent killing devices are proposed to work as short-range weapons. We describe here the structure, biosynthetic pathway, action mode and applications of one of the best-characterized long-range weapons, the heat-stable antifungal factor (HSAF) produced by Lysobacter enzymogenes. We discuss how the flagellar type III secretion system has evolved into an enzyme secretion machine for the intermediate-range antifungal weapons. We highlight an intricate mechanism coordinating the production of the long-range weapon, HSAF and the proposed contact-dependent killing device, type VI secretion system. We also overview the regulatory mechanisms of HSAF production involving specific transcription factors and the bacterial second messenger c-di-GMP.


Lysobacter , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Bacterial Proteins/metabolism , Fungi/metabolism , Lysobacter/genetics , Lysobacter/metabolism , Transcription Factors/metabolism
6.
Mol Plant Pathol ; 22(5): 602-617, 2021 05.
Article En | MEDLINE | ID: mdl-33709522

In the soil gammaproteobacterium Lysobacter enzymogenes, a natural fungal predator, the response regulator PilR controls type IV pili (T4P)-mediated twitching motility as well as synthesis of the heat-stable antifungal factor (HSAF). Earlier we showed that PilR acts via the second messenger, c-di-GMP; however, the mechanism remained unknown. Here, we describe how PilR, c-di-GMP signalling, and HSAF synthesis are connected. We screened genes for putative diguanylate cyclases (c-di-GMP synthases) and found that PilR binds to the promoter region of lchD and down-regulates its transcription. The DNA-binding affinity of PilR, and therefore its repressor function, are enhanced by phosphorylation by its cognate histidine kinase, PilS. The lchD gene product is a diguanylate cyclase, and the decrease in LchD levels shifts the ratio of c-di-GMP-bound and c-di-GMP-free transcription factor Clp, a key activator of the HSAF biosynthesis operon expression. Furthermore, Clp directly interacts with LchD and enhances its diguanylate cyclase activity. Therefore, the PilS-PilR two-component system activates T4P-motility while simultaneously decreasing c-di-GMP levels and promoting HSAF production via the highly specific LchD-c-di-GMP-Clp pathway. Coordinated increase in motility and secretion of the "long-distance" antifungal weapon HSAF is expected to ensure safer grazing of L. enzymogenes on soil or plant surfaces, unimpeded by fungal competitors, or to facilitate bacterial preying on killed fungal cells. This study uncovered the mechanism of coregulated pili-based motility and production of an antifungal antibiotic in L. enzymogenes, showcased the expanded range of functions of the PilS-PilR system, and highlighted exquisite specificity in c-di-GMP-mediated circuits.


Antifungal Agents/metabolism , Escherichia coli Proteins/metabolism , Fimbriae, Bacterial/metabolism , Lysobacter/genetics , Phosphorus-Oxygen Lyases/metabolism , Transcription Factors/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Escherichia coli Proteins/genetics , Lysobacter/metabolism , Models, Biological , Phosphorus-Oxygen Lyases/genetics , Phosphorylation , Promoter Regions, Genetic/genetics , Signal Transduction , Transcription Factors/genetics
7.
Environ Microbiol ; 23(2): 878-892, 2021 02.
Article En | MEDLINE | ID: mdl-32779811

Lysobacter enzymogenes is a non-flagellated, soil proteobacterium that secretes a diffusible antibiotic known as heat-stable antifungal factor (HSAF) to kill nearby fungi for food. The genome of the model strain OH11 encodes a homologous Wsp system, which is generally deployed by flagellated bacteria to achieve flagella-dependent outputs via a c-di-GMP-FleQ complex, in which c-di-GMP is a ubiquitous dinucleotide second messenger and FleQ is a transcription factor (TF). Here, we show that the Wsp system in the non-flagellated OH11 participates in a unique c-di-GMP-dependent signalling pathway and forms a WspR-CdgL binary complex to alter HSAF production, in which WspR and CdgL act as a c-di-GMP diguanylate cyclase (DGC) and a non-TF binding protein respectively. We found that the phosphorylation of WspR activates its DGC activity and enhances c-di-GMP production while inhibiting HSAF biosynthesis. The phosphorylation of WspR also plays a key role in weakening WspR-CdgL binding and HSAF generation. Interestingly, c-di-GMP binding to CdgL did not seem to induce the disassociation of the WspR-CdgL complex. These observations, along with our earlier findings, lead us to propose a model in which L. enzymogenes re-programs the Wsp system via c-di-GMP signalling to regulate HSAF biosynthesis for the benefit of ecological adaptation.


Antifungal Agents/metabolism , Cyclic GMP/metabolism , Lysobacter/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Lysobacter/classification , Lysobacter/genetics , Lysobacter/isolation & purification , Phosphorus-Oxygen Lyases/genetics , Phosphorus-Oxygen Lyases/metabolism , Phosphorylation , Signal Transduction , Soil Microbiology , Transcription Factors/genetics
...