Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 974: 176604, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38649090

RESUMEN

Osteoporosis (OP) is a metabolic bone disease with a high incidence rate worldwide. Its main features are decreased bone mass, increased bone fragility and deterioration of bone microstructure. It is caused by an imbalance between bone formation and bone resorption. Ginsenoside is a safe and effective traditional Chinese medicine (TCM) usually extracted from ginseng plants, having various therapeutic effects, of which the effect against osteoporosis has been extensively studied. We searched a total of 44 relevant articles with using keywords including osteoporosis, ginsenosides, bone mesenchymal cells, osteoblasts, osteoclasts and bone remodeling, all of which investigated the cellular mechanisms of different types of ginsenosides affecting the activity of bone remodeling by mesenchymal stem cells, osteoblasts and osteoclasts to counteract osteoporosis. This review describes the different types of ginsenosides used to treat osteoporosis from different perspectives, providing a solid theoretical basis for future clinical applications.


Asunto(s)
Ginsenósidos , Osteoporosis , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Osteoporosis/tratamiento farmacológico , Humanos , Animales , Remodelación Ósea/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos
2.
Bioresour Bioprocess ; 8(1): 30, 2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38650189

RESUMEN

Biomethanation is of great interest as it can transform CO2 to methane under ambient conditions. In particular, genetically engineered bacterium of Rhodopseudomonas palustris showed great promise for one-step biomethanation powered by solar energy, which is attractive for CO2 fixation as well as solar energy storage. However, biomethanation with R. palustris under visible light is inefficient due to its poor visible light response. In this study, CdS quantum dots with excellent visible light response were prepared and R. palustris/CdS hybrid cells were constructed. Interestingly, this bio-nano-hybrid cells showed high cell viability without significant cell damage, and the biomethanation performance of was enhanced about ~ 79% compared to that of the bare R. palustris cells. Moreover, the effects of different parameters on the methane production of this bio-nano-hybrid cells were determined, and the methane production rate was further improved by parameter optimization. This work demonstrated an efficient approach to reinforce the biomethanation of bacteria under unfavorable light wavelength, which would be helpful to extend the light spectra for photo-driven biomethanation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA