Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Genet Genomics ; 296(3): 527-539, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33797587

RESUMEN

Cis-regulatory sequences play a crucial role in regulating gene expression and are evolutionary hot spots that drive phenotypic divergence among organisms. Sequencing some cis-regulatory regions of interest in many different species is common in comparative genetic studies. For nonmodel organisms lacking genomic data, genome walking is often the preferred method for this type of application. However, applying genome walking will be laborious and time-consuming when the number of cis-regulatory regions and species to be analyzed is large. In this study, we propose a novel method called amplicon genome fishing (AGF), which can isolate and sequence cis-regulatory regions of interest for any organism. The main idea of the AGF method is to use fragments amplified from the target cis-regulatory regions as enrichment baits to capture and sequence the whole target cis-regulatory regions from genomic library pools. Unlike genome walking, the AGF method is based on hybridization capture and high-throughput sequencing, which makes this method rapid and efficient for projects where some cis-regulatory regions have to be sequenced for many species. We used human amplicons as capture baits and successfully sequenced five target enhancer regions of Homo sapiens, Mus musculus, Gallus gallus, and Xenopus tropicalis, proving the feasibility and repeatability of AGF. To show the utility of the AGF method in real studies, we used it to sequence the ZRS enhancer, a cis-regulatory region associated with the limb loss of snakes, for twenty-three vertebrate species (includes many limbless species never sequenced before). The newly obtained ZRS sequences provide new perspectives into the relationship between the ZRS enhancer's evolution and limb loss in major tetrapod lineages.


Asunto(s)
Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hibridación de Ácido Nucleico/métodos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Pollos/genética , Elementos de Facilitación Genéticos/genética , Genómica/métodos , Humanos , Ratones , Xenopus/genética
2.
G3 (Bethesda) ; 9(11): 3653-3661, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31511298

RESUMEN

Increasing evidence has pointed to the connection between pre-mRNA splicing and the circadian clock; however, the underlying mechanisms of this connection remain largely elusive. In the filamentous fungus Neurospora crassa, the core circadian clock elements comprise White Collar 1 (WC-1), WC-2 and FREQUENCY (FRQ), which form a negative feedback loop to control the circadian rhythms of gene expression and physiological processes. Previously, we have shown that in Neurospora, the pre-mRNA splicing factors Pre-mRNA-processing ATP-dependent RNA helicase 5 (PRP5), protein arginine methyl transferase 5 (PRMT5) and snRNA gene U4-2 are involved in the regulation of splicing of frq transcripts, which encode the negative component of the circadian clock system. In this work we further demonstrated that repression of spliceosomal component sRNA genes, U5, U4-1, and prp5, affected the circadian conidiation rhythms. In a prp5 knockdown strain, the molecular rhythmicity was dampened. The expression of a set of snRNP genes including prp5 was up-regulated in a mutant strain lacking the clock component wc-2, suggesting that the function of spliceosome might be under the circadian control. Among these snRNP genes, the levels of prp5 RNA and PRP5 protein oscillated. The distribution of PRP5 in cytosol was rhythmic, suggesting a dynamic assembly of PRP5 in the spliceosome complex in a circadian fashion. Silencing of prp5 caused changes in the transcription and splicing of NCU09649, a clock-controlled gene. Moreover, in the clock mutant frq9 , the rhythmicity of frq I-6 splicing was abolished. These data shed new lights on the regulation of circadian clock by the pre-RNA splicing, and PRP5 may link the circadian clock and pre-RNA splicing events through mediating the assembly and function of the spliceosome complex.


Asunto(s)
Relojes Circadianos/genética , ARN Helicasas DEAD-box/genética , Proteínas Fúngicas/genética , Neurospora/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Neurospora/metabolismo , Empalmosomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA