Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Foods ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998553

RESUMEN

Physical techniques are widely applied in the food industry due to their positive impact on food quality and the environment. Temperature differences can effectively modify starch, but the resulting changes in starch structure and quality remain unclear. In this study, the corn starch was processed with high temperature, low temperature, and temperature difference (TD), including high temperature before low temperature (H-L) and low temperature before high temperature (L-H). The results showed that high temperature induced the umbilicus to concave inward shape and sharply decreased the amylose content, while low temperature increased the surface micropores and reduced the A-chain. TD reduced the fluorescence intensity and increased the clearness of the growth ring. TD elevated the relative crystallinity (RC), short-range order, A/B1 chains, hydrolysis parameters, and resistant starch (RS), and reduced amylose content, B2/B3 chains, and viscosity. Moreover, the corn starches treated by H-L had lower amylose content and higher RC, 1047/1022, A-chain, and RS than those treated by L-H. Overall, high temperature degraded the amylose and low temperature destroyed the amylopectin. During the TD, H-L can accelerate the starch molecular rearrangement more than the opposite temperature treatment order. These results will help produce novel starches for better food applications.

2.
World J Microbiol Biotechnol ; 40(9): 267, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004689

RESUMEN

As an efficient and safe industrial bacterium, Corynebacterium glutamicum has extensive application in amino acid production. However, it often faces oxidative stress induced by reactive oxygen species (ROS), leading to diminished production efficiency. To enhance the robustness of C. glutamicum, numerous studies have focused on elucidating its regulatory mechanisms under various stress conditions such as heat, acid, and sulfur stress. However, a comprehensive review of its defense mechanisms against oxidative stress is needed. This review offers an in-depth overview of the mechanisms C. glutamicum employs to manage oxidative stress. It covers both enzymatic and non-enzymatic systems, including antioxidant enzymes, regulatory protein families, sigma factors involved in transcription, and physiological redox reduction pathways. This review provides insights for advancing research on the antioxidant mechanisms of C. glutamicum and sheds light on its potential applications in industrial production.


Asunto(s)
Antioxidantes , Proteínas Bacterianas , Corynebacterium glutamicum , Regulación Bacteriana de la Expresión Génica , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno , Factor sigma , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Antioxidantes/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Especies Reactivas de Oxígeno/metabolismo , Factor sigma/metabolismo , Factor sigma/genética
3.
Nucleic Acids Res ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967005

RESUMEN

High spontaneous mutation rate is crucial for obtaining ideal phenotype and exploring the relationship between genes and phenotype. How to break the genetic stability of organisms and increase the mutation frequency has become a research hotspot. Here, we present a practical and controllable evolutionary tool (oMut-Cgts) based on dual genetic level modification engineering for Corynebacterium glutamicum. Firstly, the modification engineering of transcription and replication levels based on RNA polymerase α subunit and DNA helicase Cgl0854 as the 'dock' of cytidine deaminase (pmCDA1) significantly increased the mutation rate, proving that the localization of pmCDA1 around transient ssDNA is necessary for genome mutation. Then, the combined modification and optimization of engineering at dual genetic level achieved 1.02 × 104-fold increased mutation rate. The genome sequencing revealed that the oMut-Cgts perform uniform and efficient C:G→T:A transitions on a genome-wide scale. Furthermore, oMut-Cgts-mediated rapid evolution of C. glutamicum with stress (acid, oxidative and ethanol) tolerance proved that the tool has powerful functions in multi-dimensional biological engineering (rapid phenotype evolution, gene function mining and protein evolution). The strategies for rapid genome evolution provided in this study are expected to be applicable to a variety of applications in all prokaryotic cells.

4.
Bioresour Technol ; 406: 131050, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942210

RESUMEN

Aromatic amino acids (AAA) and derived compounds have enormous commercial value with extensive applications in the food, chemical and pharmaceutical fields. Microbial production of AAA and derived compounds is a promising prospect for its environmental friendliness and sustainability. However, low yield and production efficiency remain major challenges for realizing industrial production. With the advancement of synthetic biology, microbial production of AAA and derived compounds has been significantly facilitated. In this review, a comprehensive overview on the current progresses, challenges and corresponding solutions for AAA and derived compounds biosynthesis is provided. The most cutting-edge developments of synthetic biology technology in AAA and derived compounds biosynthesis, including CRISPR-based system, genetically encoded biosensors and synthetic genetic circuits, were highlighted. Finally, future prospects of modern strategies conducive to the biosynthesis of AAA and derived compounds are discussed. This review offers guidance on constructing microbial cell factory for aromatic compound using synthetic biology technology.


Asunto(s)
Aminoácidos Aromáticos , Biología Sintética , Biología Sintética/métodos , Aminoácidos Aromáticos/biosíntesis , Ingeniería Metabólica/métodos , Técnicas Biosensibles/métodos , Bacterias/metabolismo , Bacterias/genética
5.
Carcinogenesis ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869064

RESUMEN

Nucleotide metabolism is the ultimate and most critical link in the self-replication process of tumors, including gastric cancer (GC). However, in clinical treatment, classic anti-tumor drugs such as 5-fluorouracil (5-FU) are mostly metabolic analogues of purines or pyrimidines, which lack specificity for tumor cells and therefore have significant side effects. It is unclear whether there are other drugs that can target nucleotide metabolism, except for nucleic acid analogues. Here, we found that a natural compound, dehydroabietylamine (DHAA), significantly reduced the viability and proliferation of GC cells and organoids. DHAA disrupts purine and pyrimidine metabolism of GC cells, causing DNA damage and further inducing apoptosis. DHAA treatment decreased transcription and protein levels of key enzymes involved in nucleotide metabolism pathway, with significant reductions in the expression of pyrimidine metabolism key enzymes CAD, DHODH, and purine metabolism key enzymes PAICS. We also found that DHAA directly binds to and reduces the expression of Forkhead box K2 (FOXK2), a common transcription factor for these metabolic enzymes. Ultimately, DHAA was shown to delay tumorigenesis in K19-Wnt1/C2mE transgenic mice model and reduce levels of CAD, DHODH, and PAICS in vivo. We demonstrate that DHAA exerts an anticancer effect on GC by targeting transcription factor FOXK2, reducing transcription of key genes for nucleotide metabolism and impairing nucleotide biosynthesis, thus DHAA is a promising candidate for GC therapy.

6.
Sci Rep ; 14(1): 12165, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806608

RESUMEN

In recent years, with the development of the new energy industry, the demand for cobalt as a raw material for power batteries has been increasing. However, China itself has a shortage of cobalt resources. Therefore, overcoming poor resource conditions and enhancing the international competitiveness of the cobalt industry have become urgent issues. This paper is based on global trade data on cobalt resources from 2007 to 2020. A panel regression model is constructed from the perspective of trade networks, and Entropy-Topsis is used to construct a comprehensive evaluation index system for the international competitiveness of critical nonferrous metals. This study empirically examines the impact of the trade network characteristics of cobalt resources on international competitiveness, assigns practical significance to trade network characteristic indicators, and analyses the overall competitiveness changes in the global cobalt industry chain and its upstream, midstream, and downstream sectors. The research findings reveal the following key points: (1) In recent years, the competitive focus of the cobalt industry chain in various countries has shifted from upstream and midstream to midstream and downstream, with increasingly fierce trade competition downstream, gradually tilting toward countries such as South Korea, Japan, and China. (2) Cobalt trade competition, which was initially characterized by competition among multiple countries, has gradually become more centralized and stable, with differences in the competitiveness of various countries occurring at different stages of the cobalt industry chain. (3) Network centrality and network heterogeneity both have a significant promoting effect on the international competitiveness of the industry, while network connectivity has a significant inhibitory effect on the improvement of international competitiveness.On this basis, the study also suggests some policy implications. The purpose of the study is to enhance the international competitiveness of China's cobalt industry from a trade perspective and to investigate the developments of cobalt trade between China and the rest of the world.

7.
Synth Syst Biotechnol ; 9(3): 470-480, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38634000

RESUMEN

Microbial cell factories utilize renewable raw materials for industrial chemical production, providing a promising path for sustainable development. Bacillus subtilis is widely used in industry for its food safety properties, but challenges remain in the limitations of microbial fermentation. This study proposes a novel strategy based on lifespan engineering to design robust B. subtilis chassis cells to supplement traditional metabolic modification strategies that can alleviate cell autolysis, tolerate toxic substrates, and get a higher mass transfer efficiency. The modified chassis cells could produce high levels of l-glutaminase, and tolerate hydroquinone to produce α-arbutin efficiently. In a 5 L bioreactor, the l-glutaminase enzyme activity of the final strain CRE15TG was increased to 2817.4 ± 21.7 U mL-1, about 1.98-fold compared with that of the wild type. The α-arbutin yield of strain CRE15A was increased to 134.7 g L-1, about 1.34-fold compared with that of the WT. To our knowledge, both of the products in this study performed the highest yields reported so far. The chassis modification strategy described in this study can Improve the utilization efficiency of chassis cells, mitigate the possible adverse effects caused by excessive metabolic modification of engineered strains, and provide a new idea for the future design of microbial cell factories.

8.
Bioresour Technol ; 401: 130674, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642663

RESUMEN

Chemical production wastewater contains large amounts of organic solvents (OSs), which pose a significant threat to the environment. In this study, a 10 g·L-1 styrene oxide tolerant strain with broad-spectrum OSs tolerance was obtained via adaptive laboratory evolution. The mechanisms underlying the high OS tolerance of tolerant strain were investigated by integrating physiological, multi-omics, and genetic engineering analyses. Physiological changes are one of the main factors responsible for the high OS tolerance in mutant strains. Moreover, the P-type ATPase GOX_RS04415 and the LysR family transcriptional regulator GOX_RS04700 were also verified as critical genes for styrene oxide tolerance. The tolerance mechanisms of OSs can be used in biocatalytic chassis cell factories to synthesize compounds and degrade environmental pollutants. This study provides new insights into the mechanisms underlying the toxicological response to OS stress and offers potential targets for enhancing the solvent tolerance of G. oxydans.


Asunto(s)
Compuestos Epoxi , Gluconobacter oxydans , Mutación , Mutación/genética , Compuestos Epoxi/farmacología , Gluconobacter oxydans/metabolismo , Gluconobacter oxydans/genética , Gluconobacter oxydans/efectos de los fármacos , Solventes , Biodegradación Ambiental , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
9.
Bioresour Technol ; 397: 130502, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417463

RESUMEN

Branched-chain amino acids (BCAAs) such as L-valine, L-leucine, and L-isoleucine are widely used in food and feed. To comply with sustainable development goals, commercial production of BCAAs has been completely replaced with microbial fermentation. However, the efficient production of BCAAs by microorganisms remains a serious challenge due to their staggered metabolic networks and cell growth. To overcome these difficulties, systemic metabolic engineering has emerged as an effective and feasible strategy for the biosynthesis of BCAA. This review firstly summarizes the research advances in the microbial synthesis of BCAAs and representative engineering strategies. Second, systematic methods, such as high-throughput screening, adaptive laboratory evolution, and omics analysis, can be used to analyses the synthesis of BCAAs at the whole-cell level and further improve the titer of target chemicals. Finally, new tools and engineering strategies that may increase the production output and development direction of the microbial production of BCAAs are discussed.


Asunto(s)
Aminoácidos de Cadena Ramificada , Isoleucina , Aminoácidos de Cadena Ramificada/metabolismo , Leucina/metabolismo , Valina , Ingeniería Metabólica
10.
Int J Biol Macromol ; 262(Pt 2): 130129, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354939

RESUMEN

(R)-Citronellal is a valuable molecule as the precursor for the industrial synthesis of (-)-menthol, one of the worldwide best-selling compounds in the flavors and fragrances field. However, its biocatalytic production, even from the optically pure substrate (E)-citral, is inherently limited by the activity of Old Yellow Enzyme (OYE). Herein, we rationally designed a different approach to increase the activity of OYE in biocatalytic production. The activity of OYE from Corynebacterium glutamicum (CgOYE) is increased, as well as superior thermal stability and pH tolerance via truncating the different lengths of regions at N-terminal of CgOYE. Next, we converted the truncation mutant N31-CgOYE, a protein involved in proton transfer for the asymmetric hydrogenation of CC bonds, into highly (R)- and (S)-stereoselective enzymes using only three mutations. The mixture of racemic (E/Z)-citral is reduced into the (R)-citronellal with ee and conversion up to 99 % by the mutant of CgOYE, overcoming the problem of the reduction for the mixtures of (E/Z)-citral in biocatalytic reaction. The present work provides a general and effective strategy for improving the activity of OYE, in which the partially conserved histidine residues provide "tunable gating" for the enantioselectivity for both the (R)- and (S)-isomerases.


Asunto(s)
Aldehídos , NADPH Deshidrogenasa , Protones , NADPH Deshidrogenasa/química , NADPH Deshidrogenasa/genética , NADPH Deshidrogenasa/metabolismo , Monoterpenos Acíclicos
11.
Ann Med Surg (Lond) ; 86(1): 172-189, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38222693

RESUMEN

Background: Depression is becoming an urgent mental health problem. Si-Ni-San has been widely used to treat depression, yet its underlying pharmacological mechanism is poorly understood. Thus, we aim to explore the antidepressant mechanism of Si-Ni-San by chemical analysis and in-silico methods. Methods: Compounds in Si-Ni-San were determined by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Then, bioactive compounds were obtained from Traditional Chinese Medicines for Systems Pharmacology Database and Analysis Platform and SwissADME, and the potential targets of which were acquired from SwissTargetPrediction. Depression-related targets were collected from GeneCards. The intersection between compound-related targets and depression-related targets were screened out, and the overlapped targets were further performed protein-protein interaction, biological functional and pathway enrichment analysis. Finally, networks of Si-Ni-San against depression were constructed and visualized by Cytoscape. Results: One hundred nineteen compounds in Si-Ni-San were determined, of which 24 bioactive compounds were obtained. Then, 137 overlapped targets of Si-Ni-San against depression were collected. AKT1, PIK3R1, PIK3CA, mTOR, MAPK1 and MAPK8 were the key targets. Furthermore, PI3K-Akt signalling pathway, serotonergic synapse, MAPK signalling pathway and neurotrophin signalling pathway were involved in the antidepressant mechanism of Si-Ni-San. It showed that components like sinensetin, hesperetin, liquiritigenin, naringenin, quercetin, albiflorin and paeoniflorin were the mainly key active compounds for the antidepressant effect of Si-Ni-San. Conclusions: This study demonstrated the key components, key targets and potential pharmacological mechanisms of Si-Ni-San against depression. These results indicate that Si-Ni-San is a promising therapeutic approach for treatment of depression, and may provide evidence for the research and development of drugs for treating depression.

12.
Bioresour Technol ; 393: 130125, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040317

RESUMEN

Cascade biocatalyst systems with catalytic promiscuity can be used for synthesis of a class of chiral chemicals but the optimization of these systems by model guidance is poorly explored. In this study, a cascade system with broad substrate spectrum was characterized and simulated by kinetic model with substrates of DL-Norvaline (DL-Nor) and DL-Phenylglycine (DL-Phg) as examples. To evaluate the optimal cascade system, maximum accumulation of intermediate products and conversion rate in the process were investigated by simultaneous solution of the rate equations for varying enzyme quantities. According to the simulation results, the cascade system was optimized by regulating the expression of D-amino acid oxidase and formate dehydrogenase and was prepared by one-step. The conversion efficiency of DL-Nor and DL-Phg have been significantly improved compared with that of before optimization. Moreover, the total of L-Nor and L-Phg were reached 498.2 mM and 79.5 mM through a gradient fed-batch conversion strategy, respectively.


Asunto(s)
Glicina , Valina/análogos & derivados , Glicina/metabolismo , Catálisis
13.
Bioresour Technol ; 394: 130200, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103752

RESUMEN

L-theanine is a natural non-protein amino acid with wide applications. Thus, a high yield of L-theanine production is required on an industrial scale. Herein, an efficient L-theanine-producing strain of Corynebacterium glutamicum was constructed by combining protein and metabolic engineering. Firstly, a γ-glutamylmethylamide synthetase from Paracoccus aminovorans (PaGMAS) was isolated and engineered by computer-aided design, the resulting mutant E179K/N105R improved L-theanine yield by 36.61 %. Subsequently, to increase carbon flux towards L-theanine production, the gene ggt which degrades L-theanine, the gene alaT which participated in L-alanine synthesis, and the gene NCgl1221 which encodes glutamate-exporting protein were deleted. Finally, ppk gene was overexpressed to enhance intracellular ATP production. The reprogramed strain produced 44.12 g/L L-theanine with a yield of 57.11 % and productivity of 1.16 g/L/h, which is the highest L-theanine titer reported by Corynebacterium glutamicum. This study provides an efficient and economical biosynthetic pathway for the industrial production of L-theanine.


Asunto(s)
Corynebacterium glutamicum , Glutamatos , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ingeniería Metabólica/métodos , Fermentación , Ácido Glutámico/metabolismo
14.
PeerJ ; 11: e16040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780393

RESUMEN

Background: The rapid development of next-generation sequencing technologies allow people to analyze human complex diseases at the molecular level. It has been shown that rare variants play important roles for human diseases besides common variants. Thus, effective statistical methods need to be proposed to test for the associations between traits (e.g., diseases) and rare variants. Currently, more and more rare genetic variants are being detected throughout the human genome, which demonstrates the possibility to study rare variants. Yet complex diseases are usually measured as a variety of forms, such as binary, ordinal, quantitative, or some mixture of them. Therefore, the genetic mapping problem can be attributable to the association detection between multiple traits and multiple loci, with sufficiently considering the correlated structure among multiple traits. Methods: In this article, we construct a new non-parametric statistic by the generalized Kendall's τ theory based on family data. The new test statistic has an asymptotic distribution, it can be used to study the associations between multiple traits and rare variants, which broadens the way to identify genetic factors of human complex diseases. Results: We apply our method (called Nonp-FAM) to analyze simulated data and GAW17 data, and conduct comprehensive comparison with some existing methods. Experimental results show that the proposed family-based method is powerful and robust for testing associations between multiple traits and rare variants, even if the data has some population stratification effect.


Asunto(s)
Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Variación Genética/genética , Fenotipo , Mapeo Cromosómico , Genoma Humano
15.
Bioresour Technol ; 389: 129828, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806363

RESUMEN

L-Homoserine is an important amino acid as a precursor in synthesizing many valuable products. However, the low productivity caused by slow L-homoserine production during active cell growth in fermentation hinders its potential applications. In this study, strategies of engineering the synthetic pathway combined with regulating cell division were employed in an L-homoserine-producing Escherichia coli strain for efficiently biomanufacturing L-homoserine. First, the flux-control genes in the L-homoserine degradation pathway were omitted to redistribute carbon flux. To drive more carbon flux into L-homoserine production, the phosphoenolpyruvate-pyruvate-oxaloacetate loop was redrawn. Subsequently, the cell division was engineered by using the self-regulated promoters to coordinate cell growth and L-homoserine production. The ultimate strain HOM23 produced 101.31 g/L L-homoserine with a productivity of 1.91 g/L/h, which presented the highest L-homoserine titer and productivity to date from plasmid-free strains. The strategies used in this study could be applied to constructing cell factories for producing other L-aspartate derivatives.


Asunto(s)
Escherichia coli , Homoserina , Escherichia coli/genética , Escherichia coli/metabolismo , Homoserina/genética , Homoserina/metabolismo , Ingeniería Metabólica , Fermentación , División Celular
17.
Biotechnol Adv ; 69: 108260, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37739275

RESUMEN

L-methionine is an essential amino acid with versatile applications in food, feed, cosmetics and pharmaceuticals. At present, the production of L-methionine mainly relies on chemical synthesis, which conflicts with the concern over serious environmental problems and sustainable development goals. In recent years, microbial production of natural products has been amply rewarded with the emergence and rapid development of system metabolic engineering. However, efficient L-methionine production by microbial fermentation remains a great challenge due to its complicated biosynthetic pathway and strict regulatory mechanism. Additionally, the engineered production of L-methionine precursors, L-homoserine, O-succinyl-L-homoserine (OSH) and O-acetyl-L-homoserine (OAH), has also received widespread attention because they can be catalyzed to L-methionine via a high-efficiently enzymatic reaction in vitro, which is also a promising alternative to chemical route. This review provides a comprehensive overview on the recent advances in the microbial production of L-methionine and its precursors, highlighting the challenges and potential solutions for developing L-methionine microbial cell factories from the perspective of systems metabolic engineering, aiming to offer guidance for future engineering.


Asunto(s)
Ingeniería Metabólica , Metionina , Metionina/metabolismo , Homoserina/metabolismo , Vías Biosintéticas , Fermentación
18.
Biotechnol Biofuels Bioprod ; 16(1): 145, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775757

RESUMEN

BACKGROUND: L-Leucine is a high-value amino acid with promising applications in the medicine and feed industries. However, the complex metabolic network and intracellular redox imbalance in fermentative microbes limit their efficient biosynthesis of L-leucine. RESULTS: In this study, we applied rational metabolic engineering and a dynamic regulation strategy to construct a plasmid-free, non-auxotrophic Escherichia coli strain that overproduces L-leucine. First, the L-leucine biosynthesis pathway was strengthened through multi-step rational metabolic engineering. Then, a cooperative cofactor utilization strategy was designed to ensure redox balance for L-leucine production. Finally, to further improve the L-leucine yield, a toggle switch for dynamically controlling sucAB expression was applied to accurately regulate the tricarboxylic acid cycle and the carbon flux toward L-leucine biosynthesis. Strain LEU27 produced up to 55 g/L of L-leucine, with a yield of 0.23 g/g glucose. CONCLUSIONS: The combination of strategies can be applied to the development of microbial platforms that produce L-leucine and its derivatives.

19.
Sheng Wu Gong Cheng Xue Bao ; 39(8): 3273-3289, 2023 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-37622360

RESUMEN

L-glutamic acid is the world's largest bulk amino acid product that is widely used in the food, pharmaceutical and chemical industries. Using Corynebacterium glutamicum G01 as the starting strain, the fermentation by-product alanine content was firstly reduced by knocking out the gene encoding alanine aminotransferase (alaT), a major by-product related to alanine synthesis. Secondly, since the α-ketoglutarate node carbon flow plays an important role in glutamate synthesis, the ribosome-binding site (RBS) sequence optimization was used to reduce the activity of α-ketoglutarate dehydrogenase and enhance the glutamate anabolic flow. The endogenous conversion of α-ketoglutarate to glutamate was also enhanced by screening different glutamate dehydrogenase. Subsequently, the glutamate transporter was rationally desgined to improve the glutamate efflux capacity. Finally, the fermentation conditions of the strain constructed using the above strategy were optimized in 5 L fermenters by a gradient temperature increase combined with a batch replenishment strategy. The glutamic acid production reached (135.33±4.68) g/L, which was 41.2% higher than that of the original strain (96.53±2.32) g/L. The yield was 55.8%, which was 11.6% higher than that of the original strain (44.2%). The combined strategy improved the titer and the yield of glutamic acid, which provides a reference for the metabolic modification of glutamic acid producing strains.


Asunto(s)
Corynebacterium glutamicum , Ácido Glutámico , Corynebacterium glutamicum/genética , Ácidos Cetoglutáricos , Ingeniería Metabólica , Alanina
20.
Sheng Wu Gong Cheng Xue Bao ; 39(8): 3318-3335, 2023 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-37622363

RESUMEN

ATP is an important cofactor involved in many biocatalytic reactions that require energy input. Polyphosphate kinases (PPK) can provide energy for ATP-consuming reactions due to their cheap and readily available substrate polyphosphate. We selected ChPPK from Cytophaga hutchinsonii for substrate profiling and tolerance analysis. By molecular docking and site-directed mutagenesis, we rationally engineered the dual-substrate channel cavity of polyphosphate kinase to improve the catalytic activity of PPK. Compared with the wild type, the relative enzyme activity of the screened mutant ChPPKK81H-K103V increased by 326.7%. Meanwhile, the double mutation expanded the substrate utilization range and tolerance of ChPPK, and improved its heat and alkali resistance. Subsequently, we coupled the glutathione bifunctional enzyme GshAB and ChPPKK81H-K103V based on this ATP regeneration system, and glutathione was produced by cell-free catalysis upon disruption of cells. This system produced (25.4±1.9) mmol/L glutathione in 6 h upon addition of 5 mmol/L ATP. Compared with the system before mutation, glutathione production was increased by 41.9%. After optimizing the buffer, bacterial mass and feeding time of this system, (45.2±1.8) mmol/L glutathione was produced in 6 h and the conversion rate of the substrate l-cysteine was 90.4%. Increasing the ability of ChPPK enzyme to produce ATP can effectively enhance the conversion rate of substrate and reduce the catalytic cost, achieving high yield, high conversion rate and high economic value for glutathione production by cell-free catalysis. This study provides a green and efficient ATP regeneration system that may further power the ATP-consuming biocatalytic reaction platform.


Asunto(s)
Adenosina Trifosfato , Glutatión , Simulación del Acoplamiento Molecular , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA