Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Front Neurol ; 15: 1392568, 2024.
Article En | MEDLINE | ID: mdl-38841691

Objectives: Cardiogenic cerebral embolism (CCE) poses a significant health risk; however, there is a dearth of published prognostic prediction models addressing this issue. Our objective is to establish prognostic prediction models (PM) for predicting poor functional outcomes at 3 months in patients with acute CCE associated with non-valvular atrial fibrillation (NVAF) and perform both internal and external validations. Methods: We included a total of 730 CCE patients in the development cohort. The external regional validation cohort comprised 118 patients, while the external time-sequential validation cohort included 63 patients. Multiple imputation by chained equations (MICE) was utilized to address missing values and the least absolute shrink and selection operator (LASSO) regression was implemented through the glmnet package, to screen variables. Results: The 3-month prediction model for poor functional outcomes, denoted as N-ABCD2, was established using the following variables: NIHSS score at admission (N), Age (A), Brain natriuretic peptide (BNP), C-reactive protein (CRP), D-dimer polymers (D), and discharge with antithrombotic medication (D). The model's Akaike information criterion (AIC) was 637.98, and the area under Curve (AUC) for the development cohort, external regional, and time-sequential cohorts were 0.878 (95% CI, 0.854-0.902), 0.918 (95% CI, 0.857-0.979), and 0.839 (95% CI, 0.744-0.934), respectively. Conclusion: The N-ABCD2 model can accurately predict poor outcomes at 3 months for CCE patients with NVAF, demonstrating strong prediction abilities. Moreover, the model relies on objective variables that are readily obtainable in clinical practice, enhancing its convenience and applicability in clinical settings.

2.
Front Microbiol ; 15: 1336490, 2024.
Article En | MEDLINE | ID: mdl-38389526

Orf virus (ORFV), a typical member of the genus Parapoxvirus, Poxvirus family, causes a contagious pustular dermatitis in sheep, goats, and humans. Poxviruses encode a multisubunit DNA-dependent RNA polymerase (vRNAP) that carries out viral gene expression in the host cytoplasm, which is a viral factor essential to poxvirus replication. Due to its vital role in viral life, vRNAP has emerged as one of the potential drug targets. In the present study, we investigated the antiviral effect of genistein against ORFV infection. We provided evidence that genistein exerted antiviral effect through blocking viral genome DNA transcription/replication and viral protein synthesis and reducing viral progeny, which were dosedependently decreased in genistein-treated cells. Furthermore, we identified that genistein interacted with the vRNAP RPO30 protein by CETSA, molecular modeling and Fluorescence quenching, a novel antiviral target for ORFV. By blocking vRNAP RPO30 protein using antibody against RPO30, we confirmed that the inhibitory effect exerted by genistein against ORFV infection is mediated through the interaction with RPO30. In conclusion, we demonstrate that genistein effectively inhibits ORFV transcription in host cells by targeting vRNAP RPO30, which might be a promising drug candidate against poxvirus infection.

3.
Vet Res ; 54(1): 22, 2023 Mar 14.
Article En | MEDLINE | ID: mdl-36918891

Orf virus (ORFV) is the causative agent of contagious ecthyma, which is an important zoonotic pathogen with a widespread distribution affecting sheep, goats and humans. Our previous research showed that autophagy can be induced in host cells by ORFV infection. However, the exact mechanism of ORFV-induced autophagy remains unknown. In this study, we investigated the underlying mechanisms of autophagy induced by ORFV in OFTu cells and the impact of autophagy on ORFV replication. By using specific autophagy inhibitors and activators, Western blotting, immunofluorescence and transmission electron microscopy imaging, we confirmed that ORFV infection triggered intracellular autophagosome accumulation and the activation of autophagic flux. Moreover, ORFV-induced autophagic activity was found to rely on an increase in the phosphorylation of tuberous sclerosis complex 2 (TSC2) and a decrease in the phosphorylation of mammalian target of rapamycin (mTOR), which is mediated by the suppression of the PI3K/AKT/mTOR signalling pathway and activation of the ERK1/2/mTOR signalling pathway. Furthermore, we investigated the role of mTOR-mediated autophagy during ORFV replication using pharmacological agents and demonstrated that ORFV-induced autophagy correlated positively with viral replication. Taken together, our data reveal the pathways of ORFV-induced autophagy and the impact of autophagy on ORFV replication, providing new insights into ORFV pathogenesis.


Orf virus , Animals , Humans , Autophagy , MAP Kinase Signaling System , Orf virus/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sheep , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Virus Replication
4.
Virus Genes ; 58(5): 403-413, 2022 Oct.
Article En | MEDLINE | ID: mdl-35780442

Orf virus (ORFV, species Orf virus) belongs to the typical species of the Parapoxvirus genus of the family Poxviridae, which infects sheep, goats, and humans with worldwide distribution. Although outbreaks of Orf have been reported sequentially in several Chinese provinces, the epidemiology of Orf and genetic diversity of ORFV strains still needs to be further characterized. To further reveal the genomic organization of the ORFV-GZ18 and ORFV-CL18 isolates, the complete genome sequences of two recently obtained ORFV isolates were sequenced using the next-generation sequencing technology and analyzed, which had been deposited in the GenBank database under accession number MN648218 and MN648219, respectively. The complete genomic sequence of ORFV-CL18 was 138,495 bp in length, including 131 potential open reading frames (ORFs) flanked by inverted terminal repeats (ITRs) of 3481 bp at both ends, which has genomic structure typical Parapoxviruses. The overall genomic organization of the fully sequenced genome of ORFV-GZ18 was consistent with ORFV-CL18 genome, with a complete genome size of 138,446 nucleotides, containing 131 ORFs flanked by ITRs of 3469 bp. Additionally, the overall G + C contents of ORFV-GZ18 and ORFV-CL18 genome sequences were about 63.9% and 63.8%, respectively. The phylogenetic analysis showed that both ORFV-GZ18 and ORFV-CL18 were genetically closely related to ORFV-SY17 derived from sheep. In summary, the complete genomic sequences of ORFV-GZ18 and ORFV-CL18 are reported, with the hope it will be useful to investigate the host range, geographic distribution, and genetic evolution of the virus in Southern West and Northern East China.


Ecthyma, Contagious , Orf virus , Animals , China/epidemiology , Genomics , Goats , Humans , Nucleotides , Orf virus/genetics , Phylogeny , Sheep
5.
J Virol ; 95(19): e0015321, 2021 09 09.
Article En | MEDLINE | ID: mdl-34287041

Orf virus (ORFV) is a highly epitheliotropic parapoxvirus with zoonotic significance that induces proliferative lesions in the skin of sheep, goats, and humans. Several viral proteins carried by ORFV, including nuclear factor-κB (NF-κB) inhibitors, play important roles in hijacking host-associated proteins for viral evasion of the host innate immune response. However, the roles of proteins with unknown functions in viral replication and latent infection remain to be explored. Here, we present data demonstrating that the ORF120, an early-late ORFV-encoded protein, activates the NF-κB pathway in the early phase of infection, which implies that ORFV may regulate NF-κB through a biphasic mechanism. A DUAL membrane yeast two-hybrid system and coimmunoprecipitation experiments revealed that the ORF120 protein interacts with Ras-GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1). The overexpression of the ORF120 protein can efficiently increase the expression of G3BP1 and nuclear translocation of NF-κB-p65 in primary ovine fetal turbinate (OFTu) and HeLa cells. The knockdown of G3BP1 significantly decreased ORF120-induced NF-κB activation, indicating that G3BP1 is involved in ORF120-induced NF-κB pathway activation. A dual-luciferase reporter assay revealed that ORF120 could positively regulate the NF-κB pathway through the full-length G3BP1 or the domain of G3BP1RRM+RGG. In conclusion, we demonstrate, for the first time, that the ORF120 protein is capable of positively regulating NF-κB signaling by interacting with G3BP1, providing new insights into ORFV pathogenesis and a theoretical basis for antiviral drug design. IMPORTANCE As part of the host innate response, the nuclear factor-κB (NF-κB) pathway plays a partial antiviral role in nature by regulating the innate immune response. Thus, the NF-κB pathway is probably the most frequently targeted intracellular pathway for subversion by anti-immune modulators that are carried by a wide range of pathogens. Various viruses, including poxviruses, carry several proteins that prepare the host cell for viral replication by inhibiting cytoplasmic events, leading to the initiation of NF-κB transcriptional activity. However, NF-κB activity is hypothesized to facilitate viral replication to a great extent. The significance of our research is in the exploration of the activation mechanism of NF-κB induced by the Orf virus (ORFV) ORF120 protein interacting with G3BP1, which helps not only to explain the ability of ORFV to modulate the immune response through the positive regulation of NF-κB but also to show the mechanism by which the virus evades the host innate immune response.


DNA Helicases/metabolism , Ecthyma, Contagious/virology , NF-kappa B/metabolism , Orf virus/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Cells, Cultured , Cytoplasm/metabolism , DNA Helicases/chemistry , HeLa Cells , Humans , Orf virus/genetics , Orf virus/growth & development , Orf virus/pathogenicity , Poly-ADP-Ribose Binding Proteins/chemistry , Protein Binding , Protein Interaction Domains and Motifs , RNA Helicases/chemistry , RNA Recognition Motif Proteins/chemistry , Sheep , Signal Transduction , Transcription Factor RelA/metabolism , Transcription, Genetic , Transcriptional Activation , Viral Proteins/genetics , Virulence
6.
Neuropsychiatr Dis Treat ; 16: 1483-1491, 2020.
Article En | MEDLINE | ID: mdl-32606701

BACKGROUND AND AIMS: Decreased serum retinoic acid (RA) levels have been shown to be linked with increased mortality in cardiovascular diseases. This study aimed to investigate the relationship between serum RA and 3-month functional outcome after ischemic stroke. METHODS: Between January 2019 and September 2019, we prospectively recruited ischemic stroke patients within 24 hrs of symptom onset. Serum RA levels were measured for all patients at admission. The primary outcome was defined as poor functional outcome (modified Rankin Scale 3-6) at 90 days. The secondary outcome was defined as early neurological deterioration (END), which is considered as an increase of ≥1 point in motor power or total National Institutes of Health Stroke Scale score of ≥2 points within 7 days. RESULTS: A total of 217 patients were included in the analysis. The median RA levels were 2.9 ng/mL. Ninety-four (43.3%) and 65 (30.0%) patients experienced 3-month poor outcome and END, respectively. After adjusted for potential confounders, decreased levels of serum RA were associated with a higher risk of poor outcome (P for trend = 0.001) and END (P for trend = 0.002). Adding RA quartile to the existing risk factors improved risk prediction for poor outcome [net reclassification improvement (NRI) = 42.6%, P = 0.001; integrated discrimination improvement (IDI) = 5.7%, P = 0.001] and END (NRI index = 45.4%, P = 0.001; IDI = 4.3%; P = 0.005). CONCLUSION: Low serum RA levels at baseline were associated with poor prognosis at 90 days after ischemic stroke, suggesting that RA may be a potential prognostic biomarker for ischemic stroke.

7.
Asian J Psychiatr ; 46: 87-91, 2019 Dec.
Article En | MEDLINE | ID: mdl-31639555

Previous studies suggest that retinoic acid (RA) can exert neuroprotective function in ischemic stroke. However, its role in post-stroke depression (PSD) has still been unclear. We sought to investigate the relationship between circulating RA levels and PSD in patients with ischemic stroke. From September 2018 to March 2019, we prospectively screened patients with ischemic stroke who were hospitalized within 7 days of symptoms onset. RA levels were measured after admission. All patients were followed up at 3 months after stroke. Diagnosis of PSD was made in line with the Chinese version of Structured Clinical Interview of the Diagnostic and Statistical Manual of Mental Disorders, 4th edition criteria. PSD risk was estimated using multivariable regression models. In total, 352 ischemic stroke patients were enrolled for the final analysis. Up to 3 months after symptoms onset, 102 subjects experienced PSD. PSD patients showed significantly lower RA levels at baseline as compared to non-PSD patients. In univariate logistic analysis, reduced levels of RA was a significant predictor of PSD. These results were further confirmed in multivariate regression additionally controlled for possible relevant confounders. Our study shows that decreased serum RA levels at admission might be associated with 3-month PSD in ischemic stroke patients.


Brain Ischemia/blood , Brain Ischemia/complications , Depression/blood , Depression/etiology , Stroke/blood , Stroke/complications , Tretinoin/blood , Aged , Female , Humans , Male , Middle Aged , Prospective Studies
8.
Virus Genes ; 55(4): 490-501, 2019 Aug.
Article En | MEDLINE | ID: mdl-31030330

Orf virus (ORFV), a typical member of the Parapoxvirus genus within the family Poxviridae, which is the causative agent of Orf, a common epitheliotropic viral disease of sheep, goats, wild ruminants, and humans. In the present study, we sequenced the complete genomic sequences of two ORFV strains (ORFV-SY17, isolated from sheep, and ORFV-NA17, isolated from goat) and conducted the comparative analysis of multiple ORFVs. The complete genomic sequence of ORFV-SY17 was at length of 140,413 bp, including 131 potential open reading frames (ORFs) flanked by inverted terminal repeats (ITRs) of 4267 bp at both ends. The ORFV-NA17 strain displayed the similar genome structure with ORFV-SY17. The whole genomic sequence of ORFV-NA17 strain was 139,287 bp in length and contained 132 ORFs flanked by ITRs of 3974 bp. The overall G+C contents of ORFV-SY17 and ORFV-NA17 genome sequences were about 63.8% and 63.7%, respectively. The ITR sequences analysis showed that ORFV-SY17 and ORFV-NA17 contained the terminal BamHI sites and conserved telomere resolution sequences at both ends of their genome. In addition, comparative analysis of ORFs among ORFV-SY17, ORFV-NA17, and other ORFV strains revealed several sequence variations caused by insertions or deletions, especially in ORFs 005 and 116, which were very likely associated with host species. Phylogenetic analysis based on the complete genome sequences revealed that ORFV-SY17 was genetically closely related to NA1/11 and HN3/12 strains derived from sheep, while ORFV-NA17 was closely related to YX strain derived from goat. The multiple alignment of deduced amino acid sequences further revealed the genetic relationship between host species and genetic variations of ORFV strains. Taken together, the availability of genomic sequences of ORFV-SY17 and ORFV-NA17 strains from Jilin Province will aid in our understanding of the genetic diversity and evolution of ORFV strains in this region and can assist in distinguishing between ORFV strains that originate in sheep and goats.


Ecthyma, Contagious/virology , Genome, Viral , Goat Diseases/virology , Orf virus/genetics , Orf virus/isolation & purification , Sheep Diseases/virology , Animals , China , Goats , Humans , Orf virus/classification , Orf virus/ultrastructure , Phylogeny , Sheep , Whole Genome Sequencing
...