Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Nat Commun ; 13(1): 4943, 2022 08 23.
Article En | MEDLINE | ID: mdl-35999201

The tumor microenvironment (TME) in gastric cancer (GC) has been shown to be important for tumor control but the specific characteristics for GC are not fully appreciated. We generated an atlas of 166,533 cells from 10 GC patients with matched paratumor tissues and blood. Our results show tumor-associated stromal cells (TASCs) have upregulated activity of Wnt signaling and angiogenesis, and are negatively correlated with survival. Tumor-associated macrophages and LAMP3+ DCs are involved in mediating T cell activity and form intercellular interaction hubs with TASCs. Clonotype and trajectory analysis demonstrates that Tc17 (IL-17+CD8+ T cells) originate from tissue-resident memory T cells and can subsequently differentiate into exhausted T cells, suggesting an alternative pathway for T cell exhaustion. Our results indicate that IL17+ cells may promote tumor progression through IL17, IL22, and IL26 signaling, highlighting the possibility of targeting IL17+ cells and associated signaling pathways as a therapeutic strategy to treat GC.


Stomach Neoplasms , CD8-Positive T-Lymphocytes/metabolism , Humans , Single-Cell Analysis , Stomach Neoplasms/pathology , Tumor Microenvironment
2.
Viruses ; 14(2)2022 01 31.
Article En | MEDLINE | ID: mdl-35215890

African swine fever virus (ASFV) mainly infects the monocyte/macrophage lineage of pigs and regulates the production of cytokines that influence host immune responses. Several studies have reported changes in cytokine production after infection with ASFV, but the regulatory mechanisms have not yet been elucidated. Therefore, the aim of this study was to examine the immune response mechanism of ASFV using transcriptomic and proteomic analyses. Through multi-omics joint analysis, it was found that ASFV infection regulates the expression of the host NF-B signal pathway and related cytokines. Additionally, changes in the NF-κB signaling pathway and IL-1ß and IL-8 expression in porcine alveolar macrophages (PAMs) infected with ASFV were examined. Results show that ASFV infection activates the NF-κB signaling pathway and up-regulates the expression of IL-1ß and IL-8. The NF-κB inhibitor BAY11-7082 inhibited the expression profiles of phospho-NF-κB p65, p-IκB, and MyD88 proteins, and inhibited ASFV-induced NF-κB signaling pathway activation. Additionally, the results show that the NF-κB inhibitor BAY11-7082 can inhibit the replication of ASFV and can inhibit IL-1ß and, IL-8 expression. Overall, the findings of this study indicate that ASFV infection activates the NF-κB signaling pathway and up-regulates the expression of IL-1ß and IL-8, and inhibits the replication of ASFV by inhibiting the NF-κB signaling pathway and interleukin-1 beta and interleukin-8 production. These findings not only provide new insights into the molecular mechanism of the association between the NF-κB signaling pathway and ASFV infection, but also indicate that the NF-κB signaling pathway is a potential immunomodulatory pathway that controls ASF.


African Swine Fever Virus/drug effects , NF-kappa B/antagonists & inhibitors , Nitriles/pharmacology , Sulfones/pharmacology , Virus Replication/drug effects , African Swine Fever Virus/physiology , Animals , Gene Expression Profiling , I-kappa B Proteins/metabolism , Interleukin-1beta/metabolism , Interleukin-8/metabolism , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , NF-kappa B/metabolism , Phosphorylation/drug effects , Proteomics , Signal Transduction/drug effects , Swine , Transcription Factor RelA/metabolism
3.
Vaccines (Basel) ; 9(11)2021 Nov 22.
Article En | MEDLINE | ID: mdl-34835302

African swine fever virus (ASFV) poses serious threats to the swine industry. The mortality rate of African swine fever (ASF) is 100%, and there is no effective vaccine currently available. Complex immune escape strategies of ASFV are crucial factors affecting immune prevention and vaccine development. CD2v and MGF360-505R genes have been implicated in the modulation of the immune response. The molecular mechanisms contributing to innate immunity are poorly understood. In this study, we discover the cytopathic effect and apoptosis of ΔCD2v/ΔMGF360-505R-ASFV after infection in porcine alveolar macrophages (PAMs) was significantly less than wild-type ASFV. We demonstrated that CD2v- and MGF360-505R-deficient ASFV decrease the level of apoptosis by inhibiting the NF-κB signaling pathway and IL-1ß mRNA transcription. Compared with wild-type ASFV infection, the levels of phospho-NF-κB p65 and p-IκB protein decreased in CD2v- and MGF360-505R-deficient ASFV. Moreover, CD2v- and MGF360-505R-deficient ASFV induced less IL-1ß production than wild-type ASFV and was attenuated in replication compared with wild-type ASFV. We further found that MGF360-12L, MGF360-13L, and MGF-505-2R suppress the promoter activity of NF-κB by reporter assays, and CD2v activates the NF-κB signaling pathway. These findings suggested that CD2v- and MGF360-505R-deficient ASFV could reduce the level of ASFV p30 and the apoptosis of PAMs by inhibiting the NF-κB signaling pathway and IL-1ß mRNA transcription, which might reveal a novel strategy for ASFV to maintain the replication of the virus in the host.

4.
Antiviral Res ; 191: 105081, 2021 07.
Article En | MEDLINE | ID: mdl-33945807

African swine fever virus (ASFV) is a highly infectious and lethal swine pathogen that causes serious socio-economic consequences in endemic countries for which no safe and effective vaccine is currently available. GS-441524, a 1-cyano-substituted adenine C-nucleoside ribose analogue, inhibits viral RNA transcription by competing with natural nucleosides (ATP, TTP, CTP, and GTP) and effectively inhibits viral RNA-dependent RNA polymerase activity. However, whether GS-441524 can inhibit the replication of DNA viruses is unknown. In this study, we confirmed that GS-441524 inhibits ASFV infection in porcine alveolar macrophages (PAMs) in a dose-dependent manner; GS-441524 significantly inhibited ASFV replication at different time points after ASFV infection, particularly at the early stages of viral replication. Notably, GS-441524 did not increase the levels of antiviral cytokines or ATP in PAMs. However, an increase in the concentration of natural ATP in PAMs promoted the replication of ASFV and attenuated the inhibitory effect of GS-441524 in a dose-dependent manner. Our results suggest that GS-441524 is an effective antiviral against ASFV.


Adenosine/analogs & derivatives , African Swine Fever Virus/drug effects , Antiviral Agents/pharmacology , Macrophages, Alveolar/virology , Virus Replication/drug effects , Adenosine/pharmacology , African Swine Fever/virology , Animals , Chlorocebus aethiops , Macrophages, Alveolar/drug effects , Swine , Transcription, Genetic/drug effects , Vero Cells
5.
BMC Vet Res ; 16(1): 358, 2020 Sep 25.
Article En | MEDLINE | ID: mdl-32977821

BACKGROUND: Pseudorabies (PR) is latent and can persist in infected sows for a long time, and thus, convalescent sows can carry the virus throughout life, causing severe economic losses to farmers and posing a tremendous challenge to PR prevention and control. Here, to investigate the biological characteristics of pseudorabies virus (PRV), a variety of physical and chemical factors were analyzed under controlled conditions. RESULTS: The results showed that a high ambient temperature and dry environment led to faster virus inactivation. PRV had a certain resistance to weakly acidic or alkaline environments and was rapidly inactivated in strongly acidic or alkaline environments. The effect of ultraviolet (UV) radiation on PRV activity primarily depended on the frequency, intensity, and irradiation time of the UV exposure. Exposure to sunlight inactivated PRV via multiple factors, including temperature, sunlight intensity, UV intensity, and environmental humidity, and any shielding from sunlight strongly lowered the killing effect. Conventional disinfectants had a good disinfection effect on PRV. CONCLUSIONS: The biological characteristics of different PRV strains are variable. Generally, the activity of PRV is affected by multiple factors, which can show both synergy and antagonism. Real-world conditions should be taken into consideration to guide pork production.


Herpesvirus 1, Suid/physiology , Herpesvirus 1, Suid/radiation effects , Virus Inactivation/drug effects , Virus Inactivation/radiation effects , Animals , Cell Line , Disinfectants , Humidity , Hydrogen-Ion Concentration , Sunlight , Swine , Temperature , Ultraviolet Rays
6.
Vet Med Sci ; 6(4): 890-893, 2020 11.
Article En | MEDLINE | ID: mdl-32602251

African swine fever (ASF) is the number one killer of swine on pig farms and has caused significant harm to pig farming in China since its spread. In this study, we designed a variety of physicochemical factors to explore the biological characteristics of ASF, so as to guide farms to develop disinfection measures.


African Swine Fever/prevention & control , Animal Husbandry/methods , Communicable Disease Control/methods , Animals , China , Disinfection/methods , Sus scrofa , Swine
...