Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Virol ; 96(7): e0211421, 2022 04 13.
Article En | MEDLINE | ID: mdl-35262372

Virophages are a group of small double-stranded DNA viruses that infect protist hosts and parasitize the viral factory of host giant/large viruses to propagate. Here, we discover a novel cell-virus-virophage (CVv) tripartite interaction system by using unicellular micro-green algae (Chlorella sp.) as eukaryotic hosts for the first time. Viral particles, resembling known virophages and large alga viruses, are detected in culture supernatants and inside algal cells. Complete genomic sequences of the virophage (Chlorella virus virophage SW01 [CVv-SW01]; 24,744 bp) and large virus (Chlorella virus XW01 [CV-XW01]; 407,612 bp) are obtained from the cocultures. Both genomic and phylogenetic analyses show that CVv-SW01 is closely related to virophages previously found in Dishui Lake. CV-XW01 shares the greatest number of homologous genes (n = 82) with Cafeteria roenbergensis virus (CroV) and phylogenetically represents the closest relative to CroV. This is the first report of a large green alga virus being affiliated with a heterotrophic zooplankton-infecting Cafeteriavirus of the family Mimiviridae. Moreover, the codon usage preferences of CV-XW01 and CVv-SW01 are highly similar to those of CroV and its virophage Mavirus, respectively. The discovery of such a novel CVv system with the green alga Chlorella sp. as the single cellular eukaryotic host paves a way to further investigate the potential interaction mechanism of CVv and its significance in the ecology of green algae and the evolution of large/giant viruses and their parasitic viruses. IMPORTANCE Parasitic virophages are small unicellular eukaryotic dsDNA viruses that rely on the viral factories of coinfecting giant/large dsDNA viruses for propagation. Presently, the identified eukaryotic hosts of isolated virophages were restricted to a free-living amoeba, Acanthamoeba polyphaga, and a widespread marine heterotrophic flagellate, Cafeteria roenbergensis. In this study, we successfully discovered and identified a novel tripartite interaction system comprised of a micro-green alga (Chlorella sp.), Mimiviridae large green alga virus, and virophage at the coculture level, with Chlorella sp. as the eukaryotic host, based on combination analysis of infection, morphotype, genome, and phylogeny. The large green alga virus CV-XW01 represents the closest relative to the Mimiviridae giant virus Cafeteria roenbergensis virus, host virus of the virophage Mavirus, as well as a novel large virus of Mimiviridae that infects a non-protozoan protist host. The virophage CVv-SW01 highly resembles Mavirus in its codon usage frequency and preference, although they are phylogenetically distantly related. These findings give novel insights into the diversity of large/giant viruses and their virophages.


Mimiviridae , Phycodnaviridae , Virophages , Chlorella/virology , DNA Viruses/genetics , Genome, Viral , Giant Viruses/genetics , Mimiviridae/genetics , Mimiviridae/isolation & purification , Phycodnaviridae/genetics , Phycodnaviridae/isolation & purification , Phylogeny , Virophages/genetics , Virophages/isolation & purification
2.
J Virol ; 94(11)2020 05 18.
Article En | MEDLINE | ID: mdl-32188734

Virophages are small parasitic double-stranded DNA (dsDNA) viruses of giant dsDNA viruses infecting unicellular eukaryotes. Except for a few isolated virophages characterized by parasitization mechanisms, features of virophages discovered in metagenomic data sets remain largely unknown. Here, the complete genomes of seven virophages (26.6 to 31.5 kbp) and four large DNA viruses (190.4 to 392.5 kbp) that coexist in the freshwater lake Dishui Lake, Shanghai, China, have been identified based on environmental metagenomic investigation. Both genomic and phylogenetic analyses indicate that Dishui Lake virophages (DSLVs) are closely related to each other and to other lake virophages, and Dishui Lake large DNA viruses are affiliated with the micro-green alga-infecting Prasinovirus of the Phycodnaviridae (named Dishui Lake phycodnaviruses [DSLPVs]) and protist (protozoan and alga)-infecting Mimiviridae (named Dishui Lake large alga virus [DSLLAV]). The DSLVs possess more genes with closer homology to that of large alga viruses than to that of giant protozoan viruses. Furthermore, the DSLVs are strongly associated with large green alga viruses, including DSLPV4 and DSLLAV1, based on codon usage as well as oligonucleotide frequency and correlation analyses. Surprisingly, a nonhomologous CRISPR-Cas like system is found in DSLLAV1, which appears to protect DSLLAV1 from the parasitization of DSLV5 and DSLV8. These results suggest that novel cell-virus-virophage (CVv) tripartite infection systems of green algae, large green alga virus (Phycodnaviridae- and Mimiviridae-related), and virophage exist in Dishui Lake, which will contribute to further deep investigations of the evolutionary interaction of virophages and large alga viruses as well as of the essential roles that the CVv plays in the ecology of algae.IMPORTANCE Virophages are small parasitizing viruses of large/giant viruses. To our knowledge, the few isolated virophages all parasitize giant protozoan viruses (Mimiviridae) for propagation and form a tripartite infection system with hosts, here named the cell-virus-virophage (CVv) system. However, the CVv system remains largely unknown in environmental metagenomic data sets. In this study, we systematically investigated the metagenomic data set from the freshwater lake Dishui Lake, Shanghai, China. Consequently, four novel large alga viruses and seven virophages were discovered to coexist in Dishui Lake. Surprisingly, a novel CVv tripartite infection system comprising green algae, large green alga viruses (Phycodnaviridae- and Mimiviridae-related), and virophages was identified based on genetic link, genomic signature, and CRISPR system analyses. Meanwhile, a nonhomologous CRISPR-like system was found in Dishui Lake large alga viruses, which appears to protect the virus host from the infection of Dishui Lake virophages (DSLVs). These findings are critical to give insight into the potential significance of CVv in global evolution and ecology.


Chlorophyta/virology , DNA, Viral/genetics , Phylogeny , Virophages , Water Microbiology , China , Lakes , Metagenomics , Virophages/classification , Virophages/genetics
...