Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0370522, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36815836

RESUMEN

Hypervirulent Aeromonas hydrophila (vAh) has emerged as the etiologic agent of epidemic outbreaks of motile Aeromonas septicemia (MAS) in high-density aquaculture of farmed carp in China and catfish in the United States, which has caused millions of tons of lost fish. We conducted a global survey to better understand the evolution, geographical distribution, and phylogeny of vAh. Aeromonas isolates were isolated from fish that showed clinical symptoms of MAS, and pure cultures were screened for the ability to utilize myo-inositol as the sole carbon source. A total of 113 myo-inositol-utilizing bacterial strains were included in this study, including additional strains obtained from previously published culture collections. Based on a gyrB phylogeny, this collection included 66 A. hydrophila isolates, 48 of which were vAh. This collection also included five new vAh isolates from diseased Pangas catfish (Pangasius pangasius) and striped catfish (Pangasianodon hypophthalmus) obtained in Cambodia and Vietnam, respectively. Genome sequences were generated from representative vAh and non-vAh isolates to evaluate the potential for lateral genetic transfer of the myo-inositol catabolism pathway. Phylogenetic analyses of each of the nine genes required for myo-inositol utilization revealed the close affiliation of vAh strains regardless of geographic origin and suggested lateral genetic transfer of this catabolic pathway from an Enterobacter species. Prediction of virulence factors was conducted to determine differences between vAh and non-vAh strains in terms of virulence and secretion systems. Core genome phylogenetic analyses on vAh isolates and Aeromonas spp. disease isolates (55 in total) were conducted to evaluate the evolutionary relationships among vAh and other Aeromonas sp. isolates, which supported the clonal nature of vAh isolates. IMPORTANCE This global survey of vAh brought together scientists that study fish disease to evaluate the evolution, geographical distribution, phylogeny, and hosts of vAh and other Aeromonas sp. isolates. In addition to vAh isolates from China and the United States, four new vAh isolates were isolated from the lower Mekong River basin in Cambodia and Vietnam, indicating the significant threat of vAh to modern aquaculture and the need for improved biosecurity to prevent vAh spread.

2.
Data Brief ; 41: 107974, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35252492

RESUMEN

A hypervirulent pathotype of A. hydrophila (vAh) is responsible for Motile Aeromonas Septicemia (MAS) and causes mass mortalities among farmed carp and catfish species in the USA and China. One unique phenotype for vAh among other A. hydrophila strains is the ability to utilize myo-inositol as a sole carbon source. While screening for Aeromonas isolates from diseased fish that can grow using myo-inositol as a sole carbon source, A. dhakensis 1P11S3 was isolated from the spleen of striped catfish (Pangasianodon hypopthalmus) displaying clinical MAS symptoms from a freshwater farm in Malaysia. Aeromonas dhakensis is also an important pathogen in aquaculture, and in this study, we report the draft genome sequence for A. dhakensis 1P11S3, that utilize myo-inositol as a sole carbon source.

3.
Animals (Basel) ; 11(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34827972

RESUMEN

Catfish production is a major aquaculture industry in the United States and is the largest sector of food fish production. As producers aim to optimize production yields, diseases caused by bacterial pathogens are responsible for high pond mortality rates and economic losses. The major bacterial pathogens responsible are Edwardsiella ictaluri, Aeromonas spp., and Flavobacterium columnare. Given the outdoor pond culture environments and ubiquitous nature of these aquatic pathogens, there have been many reports of co-infective bacterial infections within this aquaculture sector. Co-infections may be responsible for altering disease infection mechanics, increasing mortality rates, and creating difficulties for disease management plans. Furthermore, proper diagnoses of primary and secondary pathogens are essential in ensuring the correct treatment approaches for antimicrobials and chemical applications. A thorough understanding of the interactions and infectivity dynamics for these warm water bacterial pathogens will allow for the adoption of new prevention and control methods, particularly in vaccine development. This review aims to provide an overview of co-infective pathogens in catfish culture and present diagnostic case data from Mississippi and Alabama to define prevalence for these multiple-species infections better.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...