Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 337
1.
Oral Oncol ; 154: 106865, 2024 May 31.
Article En | MEDLINE | ID: mdl-38823173

OBJECTIVE: The aim of this study is to evaluate the efficacy and cost-effectiveness of various induction chemotherapy (IC) regimens as first-line treatment for Locoregionally advanced nasopharyngeal carcinoma (LA-NPC), aiming to provide clinicians and patients with informed insights to aid in treatment decision-making. PATIENTS AND METHODS: We conducted a network meta-analysis (NMA) and cost-effectiveness analysis (CEA) based on data from 10 clinical trials investigating IC regimens for the treatment of LA-NPC. A Bayesian NMA was performed, with the primary outcomes being hazard ratios (HRs) for disease-free survival (DFS) and overall survival (OS). To model the disease progression of LA-NPC, we developed a dynamic partitioned survival model consisting of three disease states: progression-free survival (PFS), progression disease (PD), and death. The model was run on a 3-week cycle for a research period of 10 years, with quality-adjusted life-years (QALYs) and incremental cost-effectiveness ratios (ICERs) serving as outcome measures. RESULTS: According to the surface under the cumulative ranking curve (SUCRA) estimates derived from the NMA, TPC and TP, as IC regimens, appear to exhibit superior efficacy compared to other treatment modalities. In terms of CEA, concurrent chemoradiotherapy (CCRT), TPF + CCRT, and GP + CCRT were found to be dominated (more costs and less QALYs). Comparatively, TPC + CCRT emerged as a cost-effective option with an ICER of $1260.57/QALY when compared to PF + CCRT. However, TP + CCRT demonstrated even greater cost-effectiveness than TPC + CCRT, with an associated increase in costs of $3300.83 and an increment of 0.1578 QALYs per patient compared to TPC + CCRT, resulting in an ICER of $20917.62/QALY. CONCLUSION: Based on considerations of efficacy and cost-effectiveness, the TP + CCRT treatment regimen may emerge as the most favorable first-line therapeutic approach for patients with LA-NPC.

2.
Proc Natl Acad Sci U S A ; 121(22): e2317205121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38776369

Understanding the operando defect-tuning performance of catalysts is critical to establish an accurate structure-activity relationship of a catalyst. Here, with the tool of single-molecule super-resolution fluorescence microscopy, by imaging intermediate CO formation/oxidation during the methanol oxidation reaction process on individual defective Pt nanotubes, we reveal that the fresh Pt ends with more defects are more active and anti-CO poisoning than fresh center areas with less defects, while such difference could be reversed after catalysis-induced step-by-step creation of more defects on the Pt surface. Further experimental results reveal an operando volcano relationship between the catalytic performance (activity and anti-CO ability) and the fine-tuned defect density. Systematic DFT calculations indicate that such an operando volcano relationship could be attributed to the defect-dependent transition state free energy and the accelerated surface reconstructing of defects or Pt-atom moving driven by the adsorption of the CO intermediate. These insights deepen our understanding to the operando defect-driven catalysis at single-molecule and subparticle level, which is able to help the design of highly efficient defect-based catalysts.

4.
Mater Horiz ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38747363

Silicon nanocrystals (SiNCs) have attracted considerable attention in many advanced applications due to silicon's high natural abundance, low toxicity, and impressive optical properties. However, little attention has been paid to fluorescence anti-counterfeiting applications based on lipophilic silicon nanocrystals. Moreover, it is also a challenge to fabricate aging-resistant anti-counterfeiting coatings based on silicon nanocrystals. Herein, this paper presents a demonstration of aging-resistant fluorescent anti-counterfeiting coatings based on red fluorescent silicon nanocrystals. In this work, lipophilic silicon nanocrystals (De-SiNCs) with red fluorescence were prepared first by thermal hydrosilylation between hydrogen-terminated silicon nanocrystals (H-SiNCs) and 1-decene. Subsequently, a new SiNCs/PDMS coating (De-SiNCs/DV) was fabricated by dispersing De-SiNCs into reinforcing PDMS composites with vinyl-capped silicone resin. Interestingly, the De-SiNCs/DV composites exhibit superior transparency (up to 85%) in the visible light range, outstanding fluorescence stabilities with an average lifetime of 20.59 µs under various conditions including acidic/alkaline environments, different organic solvents, high-humidity environments and UV irradiation. Meanwhile, the encapsulation of De-SiNCs is beneficial to enhancing the mechanical properties and thermal stability of De-SiNCs/DV composites. Additionally, the De-SiNCs/DV coating exhibits an excellent anti-counterfeiting effect on cotton fabrics when used as an ink in screen-printing. These findings pave the way for developing innovative flexible multifunctional anti-counterfeiting coatings in the future.

5.
Int J Biol Macromol ; 270(Pt 2): 132462, 2024 May 19.
Article En | MEDLINE | ID: mdl-38772470

Rapid development of society and the improvement of people's living standards have stimulated people's keen interest in fashion clothing. This trend has led to the acceleration of new product innovation and the shortening of the lifespan for cotton fabrics, which has resulting in the accumulation of waste cotton textiles. Although cotton fibers can be degraded naturally, direct disposal not only causes a serious resource waste, but also brings serious environmental problems. Hence, it is significant to explore a cleaner and greener waste textile treatment method in the context of green and sustainable development. To realize the high-value utilization of cellulose II aerogel derived from waste cotton products, great efforts have been made and considerable progress has been achieved in the past few decades. However, few reviews systematically summarize the research progress and future challenges of preparing high-value-added regenerated cellulose aerogels via dissolving cotton and other cellulose wastes. Therefore, this article reviews the regenerated cellulose aerogels obtained through solvent methods, summarizes their structure, preparation strategies and application, aimed to promote the development of the waste textile industry and contributed to the realization of carbon neutrality.

6.
ACS Sens ; 9(5): 2575-2584, 2024 May 24.
Article En | MEDLINE | ID: mdl-38695880

Although electronic textiles that can detect external stimuli show great promise for fire rescue, existing firefighting clothing is still scarce for simultaneously integrating reliable early fire warning and real-time motion sensing, hardly providing intelligent personal protection under complex high-temperature conditions. Herein, we introduce an "all-in-one" hierarchically sandwiched fabric (HSF) sensor with a simultaneous temperature and pressure stimulus response for developing intelligent personal protection. A cross-arranged structure design has been proposed to tackle the serious mutual interference challenge during multimode sensing using two separate sets of core-sheath composite yarns and arrayed graphene-coated aerogels. The functional design of the HSF sensor not only possesses wide-range temperature sensing from 25 to 400 °C without pressure disturbance but also enables highly sensitive pressure response with good thermal adaptability (up to 400 °C) and wide pressure detection range (up to 120 kPa). As a proof of concept, we integrate large-scalable HSF sensors onto conventional firefighting clothing for passive/active fire warning and also detecting spatial pressure and temperature distribution when a firefighter is exposed to high-temperature flames, which may provide a useful design strategy for the application of intelligent firefighting protective clothing.


Pressure , Temperature , Textiles , Textiles/analysis , Humans , Fires , Firefighters , Protective Clothing , Graphite/chemistry , Wearable Electronic Devices
7.
Heredity (Edinb) ; 2024 May 31.
Article En | MEDLINE | ID: mdl-38822132

Genome-wide association study (GWAS) is a powerful tool to identify genomic loci underlying complex traits. However, the application in natural populations comes with challenges, especially power loss due to population stratification. Here, we introduce a bivariate analysis approach to a GWAS dataset of Arabidopsis thaliana. We demonstrate the efficiency of dual-phenotype analysis to uncover hidden genetic loci masked by population structure via a series of simulations. In real data analysis, a common allele, strongly confounded with population structure, is discovered to be associated with late flowering and slow maturation of the plant. The discovered genetic effect on flowering time is further replicated in independent datasets. Using Mendelian randomization analysis based on summary statistics from our GWAS and expression QTL scans, we predicted and replicated a candidate gene AT1G11560 that potentially causes this association. Further analysis indicates that this locus is co-selected with flowering-time-related genes. The discovered pleiotropic genotype-phenotype map provides new insights into understanding the genetic correlation of complex traits.

8.
Cancer Control ; 31: 10732748241255535, 2024.
Article En | MEDLINE | ID: mdl-38773761

The current standard treatment for locally advanced squamous cell carcinoma of the head and neck (LASCCHN) comprises concurrent radiotherapy (CRT) alongside platinum-based chemotherapy. However, innovative therapeutic alternatives are being evaluated in phase II/III randomized trials. This study employed a Bayesian network meta-analysis (NMA) using fixed effects to provide both direct and indirect comparisons of all existing treatment modalities for unresectable LASCCHN. METHODS: We referenced randomized controlled trials (RCTs) from January 2000 to July 2023 by extensively reviewing PubMed, EMBASE, and Web of Science databases, adhering to the Cochrane methodology. Relevant data, including summary estimates of overall survival (OS) and progression-free survival (PFS), were extracted from these selected studies and recorded in a predefined database sheet. Subsequently, we conducted a random effects network meta-analysis using a Bayesian framework. RESULTS: Based on the Surface Under the Cumulative Ranking (SUCRA) values, the league table organizes the various treatments for OS in the following order: IC + RT&MTT, MTT-CRT, IC + CRT&MTT, CRT, IC + CRT, MTT-RT, IC + MTT-RT, and RT. In a similar order, the treatments rank as follows according to the league table: IC + CRT&MTT, MTT-CRT, IC + CRT, IC + RT&MTT, CRT, IC + MTT-RT, MTT-RT, and RT. Notably, none of these treatments showed significant advantages over concurrent chemoradiotherapy. CONCLUSION: Despite concurrent chemoradiotherapy being the prevailing treatment for LASCCHN, our findings suggest the potential for improved outcomes when concurrent chemoradiotherapy is combined with targeted therapy or induction chemotherapy.


The current standard treatment for advanced head and neck cancer involves combining radiation therapy with chemotherapy. However, there are ongoing trials exploring alternative therapies. In this study, we conducted a comprehensive analysis of existing treatments using a statistical method called network meta-analysis. Our analysis included data from randomized controlled trials published between January 2000 and July 2023. We focused on overall survival and progression-free survival as key outcome measures. The results of our analysis showed that none of the alternative treatments demonstrated significant advantages over the standard concurrent chemoradiotherapy. Nevertheless, there is potential for improved outcomes when targeted therapy or induction chemotherapy is combined with concurrent chemoradiotherapy.


Head and Neck Neoplasms , Network Meta-Analysis , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/pathology , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/pathology , Chemoradiotherapy/methods , Bayes Theorem , Randomized Controlled Trials as Topic , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
9.
ACS Nano ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38809601

The exceptional biocompatibility and adaptability of hydrogels have garnered significant interest in the biomedical field for the fabrication of biomedical devices. However, conventional synthetic hydrogels still exhibit relatively weak and fragile properties. Drawing inspiration from the photosynthesis process, we developed a facile approach to achieve a harmonious combination of superior mechanical properties and efficient preparation of silk fibroin hydrogel through photo-cross-linking technology, accomplished within 60 s. The utilization of riboflavin and H2O2 enabled a sustainable cyclic photo-cross-linking reaction, facilitating the transformation from tyrosine to dityrosine and ultimately contributing to the formation of highly cross-linked hydrogels. These photo-cross-linking hydrogels exhibited excellent elasticity and restorability even after undergoing 1000 cycles of compression. Importantly, our findings presented that hydrogel-encapsulated adipose stem cells possess the ability to stimulate cell proliferation along with stem cell stemness. This was evidenced by the continuous high expression levels of OCT4 and SOX2 over 21 days. Additionally, the utilization of photo-cross-linking hydrogels can be extended to various material molding platforms, including microneedles, microcarriers, and bone screws. Consequently, this study offered a significant approach to fabricating biomedical hydrogels capable of facilitating real-time cell delivery, thereby introducing an innovative avenue for designing silk devices with exceptional machinability and adaptability in biomedical applications.

10.
Int J Biol Macromol ; 268(Pt 1): 131622, 2024 May.
Article En | MEDLINE | ID: mdl-38636762

Separator is an essential component of lithium-ion batteries (LIBs), which is placed between the electrodes to impede their electrical contact and provide the transport channels for lithium ions. Traditionally, the separator contributes the overall mass of LIBs, thereby reducing the gravimetric capacity of the devices. Herein, a dual-layer redox-active cellulose separator is designed and fabricated to enhance the electrochemical performances of LIBs by introducing NiS. The presented separator is composed of an insulating bacterial cellulose (BC) nanofiber layer and a conductive, and redox-active NiS@BC/carbon nanotubes layer. By using the NiS@BC separator, the discharge capacity of the LiFePO4//Li half battery is enhanced to 117 mAh g-1 at a current of 2C owing to the redox-activity of NiS. Moreover, the functional separator-electrode interface can facilitate the homogenous Li stripping/plating and depress the polarization upon the repeated stripping/plating process. Consequently, the battery containing the redox-active separator exhibits outstanding cycle stability and rate capability. The present study contributes a novel strategy for the developments of functional separators to improve the electrochemical properties of LIBs.


Cellulose , Electric Power Supplies , Electrodes , Lithium , Nanofibers , Oxidation-Reduction , Lithium/chemistry , Nanofibers/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Nanotubes, Carbon/chemistry , Ions/chemistry , Electrochemical Techniques
11.
Sensors (Basel) ; 24(5)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38475085

Sensor degradation and failure often undermine users' confidence in adopting a new data-driven decision-making model, especially in risk-sensitive scenarios. A risk assessment framework tailored to classification algorithms is introduced to evaluate the decision-making risks arising from sensor degradation and failures in such scenarios. The framework encompasses various steps, including on-site fault-free data collection, sensor failure data collection, fault data generation, simulated data-driven decision-making, risk identification, quantitative risk assessment, and risk prediction. Leveraging this risk assessment framework, users can evaluate the potential risks of decision errors under the current data collection status. Before model adoption, ranking risk sensitivity to sensor data provides a basis for optimizing data collection. During the use of decision algorithms, considering the expected lifespan of sensors enables the prediction of potential risks the system might face, offering comprehensive information for sensor maintenance. This method has been validated through a case study involving an access control.

12.
Nat Commun ; 15(1): 1979, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38438379

Carbon fibers (CFs) have attracted attention in the automotive, aviation, and aerospace industries. However, the coloration of CFs is challenging due to their brittleness, inertness, complexity, and time/energy-intensive processes. Herein, inspired by the naturally grown protrusive nanostructures on the green central surface of peacock back feathers, we report an in-situ self-growing strategy for developing carbon spheres (CSs) on the CFs surface to achieve color tuning. This is achieved via the dynamic growth of CSs using glucose as the feeding material. Combined with the coloration process, the interaction between CSs and CFs promotes stable interfacial forces in integrated molding. This strategy allows the coloring system to continuously vary its color in a designated manner, thereby, endowing it with satisfactory mechanical robustness, acid durability, and light fastness. We anticipate this developed approach can be potentially competitive in the color construction of CFs with multi-colors due to its low-cost manufacturing.

13.
Polymers (Basel) ; 16(6)2024 Mar 13.
Article En | MEDLINE | ID: mdl-38543399

The global increase in population, the phenomenon of climate change, the issue of water pollution and contamination, and the inadequate management of water resources all exert heightened strain on freshwater reserves. The potential utilization of the interfacial solar steam generation (ISSG) system, which utilizes photothermal conversion to generate heat on material surfaces for wastewater purification and desalination purposes, has been successfully demonstrated. Textile-material-based ISSG devices, including (woven, nonwoven, and knitted) fabrics and electrospinning membranes, exhibit distinct properties such as a rough surface texture, high porosity, significant surface area, exceptional flexibility, and robust mechanical strength. These characteristics, combined with their affordability, accessibility, and economic viability for widespread implementation, make them extremely attractive for applications in SSG. In this review, a comprehensive analysis of the emerging concepts, advancements, and applications of textile materials, such as woven, nonwoven, and knitted fabrics and electrospun membranes, in ISSG for wastewater purification and desalination is presented. We also emphasize significant obstacles and potential prospects in both theoretical investigations and real-world implementations, aiming to contribute to future advancements in the domain of textile-material-based interfacial evaporation in wastewater purification and desalination. Furthermore, the drawbacks and the challenges of ISSG systems are also highlighted.

14.
Ultrason Sonochem ; 104: 106837, 2024 Mar.
Article En | MEDLINE | ID: mdl-38429167

The vibration mode of the radiation surface of transducer (or structure of supersaturated cavitation cloud in thin liquid) is investigated experimentally by high-speed photography. The classification of saturated, supersaturated and undersaturated cavitation clouds was proposed, and a comparison was made between saturated and supersaturated cavitation cloud structures in liquid thin layers. The characteristics and formation mechanism of supersaturated cavitation cloud structure were investigated. Based on the close correspondence and rapid response between the distribution of supersaturated cavitation clouds and vibration modes of radiation surface, a new approach is proposed to measure the vibration mode of transducer operating at high power and large amplitude in real time.

15.
Int J Biol Macromol ; 264(Pt 2): 130779, 2024 Apr.
Article En | MEDLINE | ID: mdl-38471604

Regenerated cellulose fibers has attracted increasing attention for high-grade textile raw materials and industrial textiles, but the low mechanical property caused by differences in regenerated raw materials and production levels limits its commercial application in the product diversity. Herein, we proposed a novel triple-crosslinking strategy by coupling with hydrogen bonds, chemical crosslinking, and internal mineralization from multiple pulsed vapor phase infiltration (MPI) to improve the mechanical performance of regenerated cellulose fibers. A binary solvent composed of ionic liquid (IL) and dimethyl sulfoxide (DMSO) is used to dissolve waste cotton textile and then wet spinning. Dual-crosslinking is firstly achieved by coupling glutaraldehyde (GA) and cellulose reaction. Subsequently, a metal oxide is intentionally infiltrated into inner cellulosic through MPI technology to form a third form of crosslinking, accompanied by the ultra-thin metal oxide nano-layer onto the surface of regenerated cellulose fibers. Results showed that the triple-crosslinking strategy has increased the tensile stress of the fiber by 43.57 % to 287.03 MPa. In all, triple-crosslinking strategy provides a theoretical basis and technical approach for the reinforcement of weak fibers in waste cotton recycling, which is expected to accelerate the development of the waste textile recycling industry and promote of the added-value of regenerated products.


Cotton Fiber , Textiles , Cellulose/chemistry , Oxides
16.
Angew Chem Int Ed Engl ; 63(20): e202402086, 2024 May 13.
Article En | MEDLINE | ID: mdl-38477869

Combining a strong second-order nonlinear optical (NLO) effect (>1×KH2PO4 (KDP)), a large band gap (>4.2 eV), and a moderate birefringence in ultraviolet (UV) NLO crystals remains a formidable challenge. Herein, Cd(SCN)2(C4H6N2)2, the first example of a thiocyanate capable of realizing a phase-matched UV NLO crystal material, is obtained by reducing the sulfur (S) content in the centrosymmetric (CS) structure of Cd(SCN)2(CH4N2S)2. Compared to the "shoulder-to-shoulder" one-dimensional (1D) chain of Cd(SCN)2(CH4N2S)2, Cd(SCN)2(C4H6N2)2 has a different sawtooth 1D chain structure. Cd(SCN)2(CH4N2S)2 has second harmonic generation (SHG) inertia with a band gap of 3.90 eV and a UV cutoff edge of 342 nm, however, it possesses a large birefringence (0.35@546 nm). In contrast, the symmetry center breaking of Cd(SCN)2(C4H6N2)2 leads to remarkably strong SHG intensity (10 times that of KDP). Furthermore, it has a wide band gap (4.74 eV), short UV cutoff edge (234 nm), and moderate birefringence capable of phase matching (0.17@546 nm). This research indicates that thiocyanates are a promising class of UV NLO crystal materials, and that modulation of the sulfur content of CS thiocyanates is an effective strategy for the development of UV NLO crystals with excellent overall performances.

17.
Ultrason Sonochem ; 103: 106791, 2024 Feb.
Article En | MEDLINE | ID: mdl-38325060

The phenomenon of cavitation within tubes is a common scenario in the fields of medicine and industry. This paper focuses on the effects of rigid circular tube length, diameter and the distance of bubble - tube port on the behavior of bubble in tube. The low-voltage discharge technique was utilized to induce a cavitation bubble in deionized water. The effects of rigid tube lengths, diameters, and bubble-tube port distances on the morphology of bubbles are observed using high-speed camera. It has been found that as the length of the rigid tube increases, so does the period, and this effect is more pronounced in tubes with smaller diameters. Conversely, the cavitation bubble period decreased and then stabilized as the tube diameter increased, the ratio of tube radius and the bubble radius exceeds 4.8, the period of bubble in tube is similar to that of bubble in free field. Further analysis of the influence of tube characteristics on microjets reveals that a pair of oppositely microjets were formed along the tube axis by the bubble near the midpoint of the tube axis. Moreover, when the non-dimensional tube length η < 3.5, the increase tube diameter results in a decrease microjet velocity. It has also been observed that as the bubble gradually approaches the interior of the tube, the velocity of microjets directed inward decreases. Additionally, the smaller the diameter of the tube, the greater the bubble-tube port distance required for the microjets to reach the same level of velocity as bubble near the center of the tube axis. These findings hold theoretical implications for improvement of targeted drug delivery efficiency in medicine and enhance the operational efficiency of inertial micropumps in industries.

19.
Small ; : e2309514, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38415913

Sustainable, durable, and diverse photochromic smart textiles based on bacterial cellulose (BC) have emerged as attractive candidates in UV-sensing applications due to the green and easy functionalization of BC. However, existing BC-based photochromic textiles lack photochromic efficiency and combining fastness. In this study, a green strategy for in situ fermentation is developed to achieve the directional distribution of functional particles and remarkable photochromism in photochromic bacterial cellulose (PBC). The unique functional design obtained by regulating the photochromic dye distribution in 3D nanonetworks of PBCs during in situ growth affords a more uniform distribution and high fastness. Benefiting from the uniform distribution of photochromic dyes and adequate utilization of the 3D network structure, more surface area is provided to receive and utilize the photon energy from the UV rays, making the photochromic process more effective. The as-prepared PBCs exhibited rapid (within 1 min) and stable (30 cycles) discoloration and multicolor selectivity. Their simple preparation process and exceptional wearability, e.g., their flexibility, lightweight, and air permeability, make them suitable for various applications, including tunable color switching systems, photopatterning, and daily sunlight UV monitoring. This study provides empirical value for the biofabrication of photochromic textiles and wearable flexible UV sensors.

20.
Nat Commun ; 15(1): 242, 2024 Jan 04.
Article En | MEDLINE | ID: mdl-38172150

Heterogeneous nano-electrocatalysts doped with nonmetal atoms have been studied extensively based on the so-called dopant-based active sites, while little attention has been paid to the stability of these dopants under working conditions. In this work, we reveal significantly, when the redox working potential is too low negatively or too high positively, the active sites based on these dopants actually tend to collapse. It means that some previously observed "remarkable catalytic performance" actually originated from some unknown active sites formed in situ. Take the Bi-F for the CO2RR as an example, results show that the observed remarkable activity and stability were not directly from F-based active sites, but the defective Bi sites formed in situ after the dopant leaching. Such a fact is unveiled from several heteroatom-doped nanocatalysts for four typical reactions (CO2RR, HER, ORR, and OER). This work provides insight into the role of dopants in electrocatalysis.

...