Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Intervalo de año de publicación
1.
Opt Lett ; 49(11): 3102-3105, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824338

RESUMEN

In this Letter, a novel, to the best of our knowledge, vertical directional coupling waveguide grating (VDCWG) architecture is proposed to increase the length of waveguide grating antennas for large aperture on-chip optical phased arrays (OPAs). In this new architecture, the grating emission strength is engineered by the vertical directional coupler, which provides additional degrees of design freedom. Theoretical analysis and numerical simulation show that the VDCWG can adjust the grating strength in the range of more than two orders of magnitude, corresponding to an effective grating length more than a centimeter. For proof-of-concept, a VDCWG antenna with a length of 1.5 mm is experimentally demonstrated. The grating strength is measured to be 0.17 mm-1, and the far-field divergence angle is 0.061°. A 16-channel OPA is also developed based on the proposed VDCWG, which proves the potential of the new architecture for large aperture OPAs.

2.
Opt Express ; 32(6): 10274-10283, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571243

RESUMEN

In this paper, we propose a novel bimodal waveguide based on regional mode engineering (BiMW-RME). Leveraging the orthogonality of the guided modes, the form of patterned SiO2 cladding on the bimodal waveguide can reduce the interaction between the reference mode and the analyte, thereby significantly improving sensitivity. The proposed BiMW-RME sensor experimentally demonstrates a phase sensitivity of 2766 π rad/RIU/cm and a detection limit of 2.44×1-5 RIU. The sensitivity is 2.7 times higher than that of the conventional BiMW sensor on the same SOI platform. The proposed design strategy demonstrates a significant improvement in the sensor's sensitivity, presenting a novel approach to enhancing common-path interferometric sensor performance.

3.
Opt Lett ; 49(7): 1725-1728, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560847

RESUMEN

Ultrasound coupling is one of the critical challenges for traditional photoacoustic (or optoacoustic) microscopy (PAM) techniques transferred to the clinical examination of chronic wounds and open tissues. A promising alternative potential solution for breaking the limitation of ultrasound coupling in PAM is photoacoustic remote sensing (PARS), which implements all-optical non-interferometric photoacoustic measurements. Functional imaging of PARS microscopy was demonstrated from the aspects of histopathology and oxygen metabolism, while its performance in hemodynamic quantification remains unexplored. In this Letter, we present an all-optical thermal-tagging flowmetry approach for PARS microscopy and demonstrate it with comprehensive mathematical modeling and ex vivo and in vivo experimental validations. Experimental results demonstrated that the detectable range of the blood flow rate was from 0 to 12 mm/s with a high accuracy (measurement error:±1.2%) at 10-kHz laser pulse repetition rate. The proposed all-optical thermal-tagging flowmetry offers an effective alternative approach for PARS microscopy realizing non-contact dye-free hemodynamic imaging.


Asunto(s)
Técnicas Fotoacústicas , Tecnología de Sensores Remotos , Técnicas Fotoacústicas/métodos , Reología/métodos , Ultrasonografía/métodos , Microscopía/métodos
4.
Opt Lett ; 49(7): 1741-1744, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560851

RESUMEN

Speckle-correlation optical scattering imaging (SCOSI) has shown the potential for non-invasive biomedical diagnostic applications, which directly utilizes the scattering patterns to reconstruct the deep and non-line-of-sight objects. However, the course of the translation of this technique to preclinical biomedical imaging applications has been postponed by the following two facts: 1) the field of view of SCOSI was significantly limited by the optical memory effect, and 2) the molecular-tagged functional imaging of the biological tissues remains largely unexplored. In this work, a proof-of-concept design of the first-generation widefield functional SCOSI (WF-SCOSI) system was presented for simultaneously achieving mesoscopic mapping of fluid morphology and flow rate, which was realized by implementing the concepts of scanning synthesis and fluorescence scattering flowmetry. The ex vivo imaging results of the fluorescence-labeled large-scale blood vessel network phantom underneath the strong scatters demonstrated the effectiveness of WF-SCOSI toward non-invasive hemodynamic imaging applications.


Asunto(s)
Diagnóstico por Imagen , Hemodinámica , Fantasmas de Imagen , Reología , Diseño de Equipo , Imagen Óptica/métodos
5.
Nano Lett ; 24(13): 3906-3913, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506264

RESUMEN

The intriguing and anomalous optical characteristics of exceptional points (EPs) in optical resonators have attracted significant attention. While EP-related phenomena have been observed by perturbing resonators with off-chip components, implementing EPs fully on-chip remains challenging due to their extreme susceptibility to fabrication errors. In this Letter, we propose a succinct and compact approach to reach EP in an on-chip integrated silicon microring resonator by manipulating the evolution of backscatterings with two nanocylinders of disparate diameters. The theoretical analysis unveils that the fabrication constraints could be significantly relieved by increasing the difference in diameters of the nanocylinders. The evolution from non-EP to EP is traced experimentally through the step-by-step tuning of the angular and radial positions of nanocylinders. The proposed method opens a pathway toward the on-chip high-density integration of non-Hermitian devices.

6.
Opt Lett ; 48(21): 5627-5630, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910719

RESUMEN

Photoacoustic microscope (PAM) with a low-optical NA suffers from a limited view along the optical axis, due to the coherent cancellation of acoustic pressure waves after being excited with a smoothly focused beam. Using larger-NA (NA > 0.3) objectives can readily overcome the limited-view problem, while the consequences are the shallow working distance and time-consuming depth scanning for large-volume imaging. Instead, we report an off-axis oblique detection strategy that is compatible with a low-optical-NA PAM for turning up the optical-axis structures. Comprehensive photoacoustic modeling and ex vivo phantom and in vivo mouse brain imaging experiments are conducted to validate the efficacy of correcting the limited view. Proof-of-concept experiment results show that the visibility of optical-axis structures can be greatly enhanced by making the detection angle off the optical axis larger than 45°, strongly recommending that off-axis oblique detection is a simple and cost-effective alternative method to solve the limited-view problems in low-optical-NA PAMs.

7.
Opt Express ; 31(15): 24110-24126, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475246

RESUMEN

We investigate the power scaling and thermal management of multi-point side-pumped 2.825 µm heavily-erbium-doped fluoride fiber lasers by numerical simulation. The 4-point (or 6-point) erbium-doped fluoride fiber laser with polished erbium-doped fluoride fiber-based side-pump couplers delivers an output laser power of over 100 W at each launched 981 nm pump power of 100 W (or 75 W). Meanwhile, the core temperature increases of the gain fiber tips are below 1 K, making it possible for a highly reflective fiber Bragg grating to work stably in high-power operation. Once the preparation processes of these erbium-doped fluoride fiber-based side-pump couplers and endcaps with effective coatings are mature, the proposed multi-point side-pumped erbium-doped fluoride fiber lasers with some feasibility may theoretically pave the way for the development of hundred-watt mid-infrared fiber lasers with effective thermal management.

8.
Opt Express ; 31(15): 25177-25190, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475329

RESUMEN

This work theoretically investigates the relative intensity noise (RIN) and spectral linewidth characteristics of epitaxial quantum dot (QD) lasers on silicon subject to optical injection. The results show that the RIN of QD lasers can be reduced by optical injection, hence a reduction of 10 dB is achieved which leads to a RIN as low as -167.5 dB/Hz in the stable injection-locked area. Furthermore, the spectral linewidth of the QD laser can be greatly improved through the optical injection locked scheme. It is reduced from 556.5 kHz to 9 kHz with injection ratio of -60 dB and can be further reduced down to 1.5 Hz with injection ratio of 0 dB. This work provides an effective method for designing low intensity noise and ultra-narrow linewidth QD laser sources for photonics integrated circuits on silicon.

9.
Front Pediatr ; 11: 1163664, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215605

RESUMEN

Objectives: The objectives of this study were to assess the changes in the left myocardial function after chemotherapy for childhood lymphoma and observe the predictive or monitor value for cancer treatment-related cardiac dysfunction (CTRCD) by speckle-tracking echocardiography. Methods: A total of 23 children with histopathological diagnoses of lymphoma were included, with age-matched normal controls. Comparative analysis of clinical serological tests and left heart strain parameters in children with lymphoma, including left ventricular global longitudinal strain (LVGLS); global myocardial work (GMW) indices, which include global work index (GWI), global constructive work (GCW), global wasted work, and global work efficiency; and the LS of subendocardial, middle, and subepicardial layer myocardium during left ventricular systole were measured: left atrial strain of reservoir phase (LASr), left atrial strain of conduit phase (LAScd), and left atrial strain of contraction phase (LASct). Results: One-way ANOVA showed that GLS, GWI, GCW, LASr, and LAScd were closely associated with CTRCD and multivariate logistic regression analysis showed that GLS was the most sensitive predictor for detecting patients at lofty risk of anthracycline-related cardiotoxicity. Both before and after chemotherapy, GLS in the left ventricle showed a pattern of basal segment < middle segment < apical segment and subepicardial < middle < subendocardial layer (p < 0.05), and the degree of decrease also showed a regular pattern of epicardial layer < middle layer < subendocardial layer while the difference was not significant (p > 0.05). After chemotherapy, maximum flow rate in early mitral relaxation/left atrial systolic maximum flow rate (E/A) and left atrial volume index of each group were in the normal range, and the values of LASr, LAScd, and LASct slightly increased in the second cycle and decreased significantly in the fourth cycle after chemotherapy, reaching the lowest level; LASr and LAScd were positively correlated with GLS. Conclusion: LVGLS is a more sensitive and earlier indicator to predict CTRCD compared with conventional echocardiography-related parameters and serological markers, and GLS of each myocardial layer showed a certain regularity. Left atrial strain can be used for early monitoring of cardiotoxicity in children with lymphoma after chemotherapy.

10.
Materials (Basel) ; 16(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36837268

RESUMEN

Supplementary cementitious material (SCM) plays an important role in blended cement, and the effect of the particle size and morphology of siliceous supplementary cementitious material on hydration should not be ignored. In this study, 0.5 h and 1 h of wet grinding was applied to pretreat iron ore tailing powder (TP), and the divergence in pozzolanic behavior and morphology were investigated. Then, the treated TPs were used to replace the 30% cement contents in preparing blended cementitious paste, and the impact mechanism of morphology on performance was studied emphatically. M, the autogenous shrinkages of pastes were tested. Finally, hydration reaction kinetics was carried out to explore the hydration behavior, while X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to characterize the hydration product properties, respectively. Meanwhile, microscopy intrusion porosimetry (MIP) was also carried out to characterize the pore structures of hardened specimens. Results indicated that wet grinding has a dramatic effect on particle size and morphology, but hardly affects the phase assemblages and pozzolanic reactivity of TP, while the particle shape of TP changes from sub-circular to clavate and, finally, back to sub-circular. The results of hydration reaction kinetics, representing the morphology of particles, had a significant effect on hydration rate and total heat, and compared with the sub-circle one, the clavated particle could inhibit the hydration procedure. With the increasing grinding time, the compressive strength of cementitious paste was increased from 17.37% to 55.73%, and the micro-pore structure became denser; however, the autogenous shrinkage increased.

11.
Sci Rep ; 13(1): 91, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596854

RESUMEN

The optimization of open pit mine production scheduling is not only a multistage decision-making problem but also involves space-time dynamic action among multiple factors, which makes it difficult to optimize production capacity, mining sequence, mining life, and other factors simultaneously in optimizing design. In addition, the production capacity is disorderly expanded, the calculation scale is large, and the optimization time is long. Therefore, this article designs a mobile capacity search domain method to improve computing efficiency without omitting the optimal production capacity. At the same time, taking the maximum net present value as the objective function, an enumeration method is used to optimize the possible paths in different capacity domains and calculate the infrastructure investment and facility idle cost required to meet the maximum production capacity on each possible path to control the disorderly expansion and violent fluctuation of production capacity. The research shows that the open pit mine production scheduling optimization algorithm proposed in this article can not only realize the simultaneous optimization of the three elements of production capacity, mining sequence, and mining life but also improve the computing efficiency by 200 times. Furthermore, the production capacity fluctuation is less than 1.4%. The mining life of the mine is extended by 13 years, and the overall economic benefit is increased by 18%.


Asunto(s)
Algoritmos , Minería
12.
Opt Lett ; 47(20): 5397-5400, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36240373

RESUMEN

Waveguide grating antenna (WGA) is a key component for an on-chip optical phased array. In order to form a beam with a small divergence angle, WGAs of several millimeters in length are highly desired. However, in high-index-contrast platforms such as silicon-on-insulator (SOI), such long WGAs typically require weakly modulated gratings with critical feature sizes below 10 nm. In this paper, we experimentally demonstrate a new, to the best of our knowledge, strategy to implement long WGAs. Instead of directly modulating a waveguide, we propose periodically modulating the evanescent field with subwavelength blocks. With this arrangement, weak grating strength can be achieved while maintaining a minimum feature size as large as 100 nm. For proof-of-concept, we experimentally demonstrate a 1-mm-long, single-etched WGA on a conventional 220 nm SOI platform, which achieves a far-field divergence angle of 0.095° and a wavelength scanning sensitivity of 0.168°/nm.

13.
Stem Cells Int ; 2022: 8465294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795773

RESUMEN

Although it is known that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs) alleviate hyperoxic lung injury of bronchopulmonary dysplasia (BPD) in animal models, the role of microvesicles (MVs) derived from hUCMSCs in BPD is poorly defined. Furthermore, antenatal inflammation has been linked to high risk of BPD in preterm infants. The purpose of this study was to explore whether MVs derived from hUCMSCs can preserve lung structure and function in an antenatal lipopolysaccharide- (LPS-) induced BPD rat model and to clarify the underlying mechanism. We demonstrate that antenatal LPS induced alveolar simplification, altered lung function, and dysregulated pulmonary vasculature, which restored by hUCMSCs and MVs treatment. Furthermore, MVs were large vesicles with a diameter of 100-900 nanometers and mostly uptaken by alveolar epithelial type II cells (AT2) and macrophages. Compared with the LPS-exposed group, MVs restored the AT2 cell number and SP-C expression in vivo and promoted the proliferation of AT2 cells in vitro. MVs also restored the level of IL-6 and IL-10 in lung homogenate. Additionally, PTEN/AKT and MAPK pathways were associated with the protection of MVs. Taken together, this study suggests MVs derived from hUCMSCs improve lung architecture and function in an antenatal LPS-induced BPD rat model by promoting AT2 cell proliferation and attenuating lung inflammation; thus, MVs provide a promising therapeutic vehicle for BPD treatment.

14.
Opt Express ; 30(7): 10732-10742, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473033

RESUMEN

Relying on the nonlinear multimode interference in multimode fibers and the nonlinear polarization rotation, these two mode-locked techniques are combined in our proposed fiber laser. Stable optical soliton and multi-pulse regimes with a constant frequency of 11.44 MHz have been generated experimentally. Through altering intra-cavity conditions, bound-state pulses with diverse properties are observed. To the best of our knowledge, the obtained bound-state pulse constituted by more than thirty sub-pulses is achieved for the first time. Moreover, the center wavelength of bound-state pulse could be switched in a certain range covering the entire C band.

15.
Opt Lett ; 46(19): 5000-5003, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34598252

RESUMEN

We experimentally demonstrate an ultra-compact polarization-independent 3 dB power splitter on the silicon-on-insulator platform. Subwavelength structure engineering is employed to balance the coupling coefficients of TE and TM polarizations as well as a footprint reduction. The device possesses ultra-compact (1.2µm×2.62µm) and polarization-independent features with an operating bandwidth over 50 nm (from 1540 to 1590 nm).

16.
Appl Phys Rev ; 8(3): 031313, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34552683

RESUMEN

The sudden rise of the worldwide severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in early 2020 has called into drastic action measures to perform instant detection and reduce the rate of spread. Common clinical and nonclinical diagnostic testing methods have been partially effective in satisfying the increasing demand for fast detection point-of-care (POC) methods to slow down further spread. However, accurate point-of-risk diagnosis of this emerging viral infection is paramount as the need for simultaneous standard operating procedures and symptom management of SARS-CoV-2 will be the norm for years to come. A sensitive, cost-effective biosensor with mass production capability is crucial until a universal vaccination becomes available. Optical biosensors can provide a noninvasive, extremely sensitive rapid detection platform with sensitivity down to ∼67 fg/ml (1 fM) concentration in a few minutes. These biosensors can be manufactured on a mass scale (millions) to detect the COVID-19 viral load in nasal, saliva, urine, and serological samples, even if the infected person is asymptotic. Methods investigated here are the most advanced available platforms for biosensing optical devices that have resulted from the integration of state-of-the-art designs and materials. These approaches include, but are not limited to, integrated optical devices, plasmonic resonance, and emerging nanomaterial biosensors. The lab-on-chip platforms examined here are suitable not only for SARS-CoV-2 spike protein detection but also for other contagious virions such as influenza and Middle East respiratory syndrome (MERS).

17.
ACS Appl Mater Interfaces ; 13(23): 26971-26980, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34081432

RESUMEN

The high-voltage Ni-rich LiNixCoyMnzO2 cathode materials attract attention due to their high capacity and relatively low cost. However, the undesired instability originating from side reactions with liquid electrolytes at elevated temperatures still hinders their practical application. This research aims to build a stable interface between cathode and electrolyte. We use the coupling agent KH570 to induce vinyl ethylene carbonate (VEC) monomers to in situ polymerize on the surface of LiNi0.6Co0.2Mn0.2O2 (NCM622) to form a uniform, ultrathin (∼12 nm), and highly ion-conductive poly(vinyl ethylene carbonate) (PVEC) solid polymer electrolyte layer. The modified cathode material exhibits significant improvement in rate performance and cycling stability up to 4.5 V at elevated temperatures. Scanning electron microscopy and X-ray diffraction techniques prove that the flexible polymer coating layer effectively suppresses the mechanical degradation and crystal structure changes during cycling.

18.
Opt Express ; 29(10): 15133-15144, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985219

RESUMEN

Because of the high index contrast, current silicon photonics based optical phased arrays cannot achieve small beam divergence and large field-of-view simultaneously without increasing fabrication complexity. To resolve the dilemma, we propose an ultra-long waveguide grating antenna formed by placing subwavelength segments within the evanescent field of a conventional strip waveguide. Bound state in the continuum effect is leveraged to suppress the sidewall emission. As a proof of concept, we theoretically demonstrated a millimeter-long through-etched waveguide grating antenna with a divergence angle of 0.081° and a feature size compatible with current silicon photonics foundries.

19.
Appl Opt ; 60(13): 3641-3646, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33983296

RESUMEN

A $Q$-switched mode-locked square noise-like pulse (QMLSNLP) is generated in a nonlinear polarization rotation passively mode-locked fiber laser. When the pump power changes from 154 mW to 414 mW, the frequency of the $Q$-switched envelope varies from 21.7 kHz to 38.9 kHz, while the duration of the $Q$-switched envelope decreases from $5.1\,\,{\unicode{x00B5}\rm s}$ to $3.2{\unicode{x00B5}\rm s}$, correspondingly. In the meantime, QMLSNLP keeps the fundamental repetition rate constant, and the pulse duration increases from 3.4 ns to 6.7 ns. By inserting different lengths of single-mode fiber into the ring cavity, the evolutions of QMLSNLP are measured and analyzed. According to the cavity parameters and experimental results, impacts of the cavity length on QMLSNLP are investigated in detail.

20.
Cells Tissues Organs ; 210(1): 10-23, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33910192

RESUMEN

The basement membrane interacts directly with the vocal fold epithelium. Signaling between the basement membrane and the epithelium modulates gene regulation, differentiation, and proliferation. The purpose of this study was to identify an appropriate simple single-protein substrate for growth of rabbit vocal fold epithelial cells. Vocal folds from 3 New Zealand white rabbits (Oryctolagus cuniculus) were treated to isolate epithelial cells, and cells were seeded onto cell culture inserts coated with collagen I, collagen IV, laminin, or fibronectin. Transepithelial electrical resistance (TEER) was measured, and phase contrast microscopy, PanCK, CK14, and E-cadherin immunofluorescence were utilized to assess for epithelial cell-type characteristics. Further investigation via immunofluorescence labeling was conducted to assess proliferation (Ki67) and differentiation (Vimentin). There was a significant main effect of substrate on TEER, with collagen IV eliciting the highest, and laminin the lowest resistance. Assessment of relative TEER across cell lines identified a larger range of TEER in collagen I and laminin. Phase contrast imaging identified altered morphology in the laminin condition, but cell layer depth did not appear to be related to TEER, differentiation, or morphology. Ki67 staining additionally showed no significant difference in proliferation. All conditions had confluent epithelial cells and dispersed mesenchymal cells, with increased mesenchymal cell numbers over time; however, a higher proportion of mesenchymal cells was observed in the laminin condition. The results suggest collagen IV is a preferable basement membrane substrate for in vitro vocal fold epithelial primary cell culture, providing consistent TEER and characteristic cell morphology, and that laminin is an unsuitable substrate for vocal fold epithelial cells and may promote mesenchymal cell proliferation.


Asunto(s)
Células Epiteliales , Pliegues Vocales , Animales , Membrana Basal , Adhesión Celular , Recuento de Células , Células Cultivadas , Colágeno Tipo IV , Laminina , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA