Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(6): e0233710, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32530963

RESUMEN

BACKGROUND: Phlebopus portentosus and mealy bugs form a fungus-insect gall on the roots of host plants. The fungus and mealy bugs benefit mutually through the gall, which is the key link in the nutritional mechanism of P. portentosus. The cavity of the fungus-insect gall provides an ideal shelter for mealy bugs survival and reproduction, but how does P. portentosus benefit from this symbiotic relationship? METHODOLOGY AND RESULTS: Anatomical examination of fungus-insect galls revealed that one or more mealy bugs of different generations were living inside the galls. The mealy bug's mouthpart could penetrate through the mycelium layer of the inside of the gall and suck plant juice from the host plant root. Mealy bugs excreted honeydew inside or outside the galls. The results of both honeydew agar medium and quartz tests showed that the honeydew can attract and promote the mycelial growth of P. portentosus. A test of the relationship between the honeydew and the formation of the fungus-insect gall showed that honeydew promoted gall formation. CONCLUSIONS: All experimental results in this study show that the honeydew secreted by mealy bugs can attract and promote the mycelial growth of P. portentosus, forming a fungus-insect gall, because mealy bugs' honeydew is rich in amino acids and sugars.


Asunto(s)
Basidiomycota/fisiología , Hemípteros/fisiología , Tumores de Planta/microbiología , Animales , Basidiomycota/crecimiento & desarrollo , Basidiomycota/patogenicidad , Fabaceae/microbiología , Fabaceae/parasitología , Hemípteros/patogenicidad , Tumores de Planta/parasitología
2.
Biochim Biophys Acta ; 1789(5): 395-402, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19358899

RESUMEN

Histone acetylation and methylation are linked to a variety of nuclear activities, most notably transcriptional regulation. Both synergistic and antagonistic relationships between these two modifications have been reported in different systems. Here we show that the budding yeast histone H4 arginine 3 (R3) methyltransferase Hmt1p binds acetylated histones H3 and H4, and importantly, that acetylated H4 is a significantly better methylation substrate for Hmt1p. Kinetic studies show that acetylation at any of the four acetylatable lysine residues of histone H4 results in more efficient methylation. Among the four, K8 acetylation imposes the strongest effect on reducing K(M), consistent with the observed acetylation-stimulated interaction. In vivo, hmt1Delta cells rescue the transcriptional defect caused by GCN5 deletion, indicating that one of the functions of Gcn5p is to neutralize the negative effect of Hmt1p. Mutating either K8 or R3 to alanine causes similar growth defects in selective histone and gcn5 mutant background, suggesting that these two residues function in the same pathway for optimal vegetative growth. Together, these results reveal a functional connection between histone acetylation, methylation, and two of the responsible enzymes, Gcn5p and Hmt1p.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acetilación , Arginina/metabolismo , Redes Reguladoras de Genes , Histona Acetiltransferasas/genética , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Metilación , Mutación , Unión Proteica , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Protein Expr Purif ; 41(2): 417-25, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15866730

RESUMEN

Post-translational modification of proteins is a dynamic way of generating new protein-protein interaction interfaces that are critical for signaling networks in diverse cellular functions. Purified recombinant proteins frequently lack these signature modifications. Using the tumor suppressor p53 as the model protein, we present here a tethered catalysis approach for the production of acetylated p53 in vivo. P53 is a major tumor suppressor protein that protects the cell from various oncogenic stresses. Upon DNA damage, p53 is stabilized and activated by a plethora of post-translational modifications, including acetylation. Here, we show that constitutively acetylated p53 can be expressed and purified from both yeast and Escherichia coli. This method is highly suitable for studying protein-protein interactions in the conventional yeast two-hybrid screen that requires a constitutively acetylated state of p53. Furthermore, effective production and purification of acetylated p53 from E. coli supports future biochemical and structural characterization. The method described in this work can be applied to other proteins and modifications, and thus has widespread use in the fields of signal transduction and proteomic research.


Asunto(s)
Escherichia coli/metabolismo , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/química , Levaduras/metabolismo , Acetilación , Catálisis , Escherichia coli/química , Lisina/química , Espectrometría de Masas/métodos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteína p53 Supresora de Tumor/aislamiento & purificación , Levaduras/química
4.
Nat Biotechnol ; 22(7): 888-92, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15208639

RESUMEN

We have modified the yeast two-hybrid system to enable the detection of protein-protein interactions that require a specific post-translational modification, using the acetylation of histones and the phosphorylation of the carboxyl terminal domain (CTD) of RNA polymerase II as test modifications. In this tethered catalysis assay, constitutive modification of the protein to be screened for interactions is achieved by fusing it to its cognate modifying enzyme, with the physical linkage resulting in efficient catalysis. This catalysis maintains substrate modification even in the presence of antagonizing enzyme activities. A catalytically inactive mutant of the enzyme is fused to the substrate as a control such that the modification does not occur; this construct enables the rapid identification of modification-independent interactions. We identified proteins with links to chromatin functions that interact with acetylated histones, and proteins that participate in RNA polymerase II functions and in CTD phosphorylation regulation that interact preferentially with the phosphorylated CTD.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos , Acetilación , Catálisis , Proteínas de Unión al ADN/química , Histonas/química , Fosforilación , Proteínas Quinasas/química , ARN Polimerasa II/química , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...