Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39139040

RESUMEN

With the gradually increasing requirement for freshwater, capacitive deionization (CDI) as a burgeoning desalination technique has gained wide attention owing to its merits of easy operation, high desalination efficiency, and environmental friendliness. To enhance the desalination performance of CDI, different CDI architectures are designed, such as membrane CDI, hybrid CDI, and flow-electrode CDI. However, these CDI systems have their own drawbacks, such as the high cost of membranes, capacity limitation of carbon materials and slurry blockage, which severely limit their practical application. Notably, rocking-chair CDI (RCDI) composed of symmetric electrode materials delivers excellent desalination performance because of its special dual chamber structure, which can not only break through the capacity limitations of carbon materials, but also deliver a continuous desalination process. Although RCDI showcases high promise for efficient desalination, few works systematically summarize the advantages and applications of RCDI in the desalination field. This review offers a thorough analysis of RCDI, focusing on its electrode materials, structure designs and desalination applications. Furthermore, the desalination performances of RCDI and other CDI architectures are compared to demonstrate the advantages of RCDI and the prospect of RCDI is elucidated.

2.
Chem Sci ; 15(30): 11814-11824, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092121

RESUMEN

Prussian blue analogues (PBAs), representing the typical faradaic electrode materials for efficient capacitive deionization (CDI) due to their open architecture and high capacity, have been plagued by kinetics issues, leading to insufficient utilization of active sites and poor structure stability. Herein, to address the conflict issue between desalination capacity and stability due to mismatched ionic and electronic kinetics for the PBA-based electrodes, a rational design, including Mn substitution and polypyrrole (ppy) connection, has been proposed for the nickel hexacyanoferrate (Mn-NiHCF/ppy), serving as a model case. Particularly, the theoretical calculation manifests the reduced bandgap and energy barrier for ionic diffusion after Mn substitution, combined with the increased electronic conductivity and integrity through ppy connecting, resulting in enhanced redox kinetics and boosted desalination performance. Specifically, the optimized Mn-NiHCF/ppy demonstrates a remarkable desalination capacity of 51.8 mg g-1 at 1.2 V, accompanied by a high charge efficiency of 81%, and excellent cycling stability without obvious degradation up to 50 cycles, outperforming other related materials. Overall, our concept shown herein provides insights into the design of advanced faradaic electrode materials for high-performance CDI.

3.
Chem Sci ; 15(29): 11540-11549, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39055036

RESUMEN

Molybdenum carbide (MoC) has emerged as a promising material for capacitive deionization (CDI), but the poor electrochemical kinetics in conventional MoC owing to the bulk structure and low electric conductivity limit its CDI performance. To address this challenge, herein, we develop a novel strategy to synthesize ultrafine MoC nanocrystals that are embedded within a three-dimensional nitrogen-doped carbon framework (NC/MoC). This synthesis method involves the space-confined pyrolysis of molybdate precursors within metal-organic frameworks (MOFs). In this process, molybdates are confined into the MOF crystalline structure, where MOFs provide a confined reactor and carbon source. The resulting NC/MoC with the uniformly distributed MoC nanocrystals provides sufficient active sites for the electrosorption of salt ions, while the MOF-derived NC matrix facilitates charge transfer and provides the space-confined effect for preventing the possible aggregations of MoC nanocrystals during the CDI process. The NC/MoC exhibits an impressive salt adsorption capacity (SAC, 84.2 mg g-1, 1.2 V), rapid desalination rate, and high cycling stability (91.4% SAC retention after 200 cycles), better than those of most previously reported carbon-based CDI materials. Besides, the possible mechanisms are systematically investigated by ex situ characterization and density functional theory calculations. This study opens up new avenues for the construction of metal carbide-based nanocrystals for CDI and other electrochemical applications.

4.
Small ; : e2401214, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884200

RESUMEN

Nowadays, capacitive deionization (CDI) has emerged as a prominent technology in the desalination field, typically utilizing porous carbons as electrodes. However, the precise significance of electrode properties and operational conditions in shaping desalination performance remains blurry, necessitating numerous time-consuming and resource-intensive CDI experiments. Machine learning (ML) presents an emerging solution, offering the prospect of predicting CDI performance with minimal investment in electrode material synthesis and testing. Herein, four ML models are used for predicting the CDI performance of porous carbons. Among them, the gradient boosting model delivers the best performance on test set with low root mean square error values of 2.13 mg g-1 and 0.073 mg g-1 min-1 for predicting desalination capacity and rate, respectively. Furthermore, SHapley Additive exPlanations is introduced to analyze the significance of electrode properties and operational conditions. It highlights that electrolyte concentration and specific surface area exert a substantially more influential role in determining desalination performance compared to other features. Ultimately, experimental validation employing metal-organic frameworks-derived porous carbons and biomass-derived porous carbons as CDI electrodes is conducted to affirm the prediction accuracy of ML models. This study pioneers ML techniques for predicting CDI performance, offering a compelling strategy for advancing CDI technology.

5.
Adv Mater ; 36(31): e2403385, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38769003

RESUMEN

Capacitive deionization (CDI) has emerged as a promising technology for freshwater recovery from low-salinity brackish water. It is still inapplicable in specific scenarios (e.g., households, islands, or offshore platforms) due to too low volumetric adsorption capacities. In this study, a high-density semi-metallic molybdenum disulfide (1T'-MoS2) electrode with compact architecture obtained by restacking of exfoliated nanosheets, which achieve high capacitance up to ≈277.5 F cm-3 under an ultrahigh scan rate of 1000 mV s-1 with a lower charge-transfer resistance and nearly tenfold higher electrochemical active surface area than the 2H-MoS2 electrode, is reported. Furthermore, 1T'-MoS2 electrode demonstrates exceptional volumetric desalination capacity of 65.1 mgNaCl cm-3 in CDI experiments. Ex situ X-ray diffraction (XRD) reveal that the cation storage mechanism with the dynamic expansion of 1T'-MoS2 interlayer to accommodate cations such as Na+, K+, Ca2+, and Mg2+, which in turn enhances the capacity. Theoretical analysis unveils that 1T' phase is thermodynamically preferable over 2H phase, the ion hydration and channel confinement also play critical role in enhancing ion adsorption. Overall, this work provides a new method to design compact 2D-layered nanolaminates with high-volumetric performance for CDI desalination.

6.
ACS Nano ; 18(15): 10341-10373, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38572836

RESUMEN

Noble-metal nanocrystals have emerged as essential electrode materials for catalytic oxidation of organic small molecule fuels in direct liquid fuel cells (DLFCs). However, for large-scale commercialization of DLFCs, adopting cost-effective techniques and optimizing their structures using advanced matrices are crucial. Notably, noble metal-decorated porous carbon nanoarchitectures exhibit exceptional electrocatalytic performances owing to their three-dimensional cross-linked porous networks, large accessible surface areas, homogeneous dispersion (of noble metals), reliable structural stability, and outstanding electrical conductivity. Consequently, they can be utilized to develop next-generation anode catalysts for DLFCs. Considering the recent expeditious advancements in this field, this comprehensive review provides an overview of the current progress in noble metal-decorated porous carbon nanoarchitectures. This paper meticulously outlines the associated synthetic strategies, precise microstructure regulation techniques, and their application in electrooxidation of small organic molecules. Furthermore, the review highlights the research challenges and future opportunities in this prospective research field, offering valuable insights for both researchers and industry experts.

7.
Mater Horiz ; 11(12): 2974-2985, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38592376

RESUMEN

Covalent organic frameworks (COFs) with customizable geometry and redox centers are an ideal candidate for supercapacitors and hybrid capacitive deionization (HCDI). However, their poor intrinsic conductivity and micropore-dominated pore structures severely impair their electrochemical performance, and the synthesis process using organic solvents brings serious environmental and cost issues. Herein, a 2D redox-active pyrazine-based COF (BAHC-COF) was anchored on the surface of graphene in a solvent-free strategy for heterointerface regulation. The as-prepared BAHC-COF/graphene (BAHCGO) nanohybrid materials possess high-speed charge transport offered by the graphene carrier and accelerated electrolyte ion migration within the BAHC-COF, allowing ions to effectively occupy ion storage sites inside BAHC. As a result, the BAHCGO//activated carbon asymmetric supercapacitor achieves a high energy output of 61.2 W h kg-1 and a satisfactory long-term cycling life. More importantly, BAHCGO-based HCDI possesses a high salt adsorption capacity (SAC) of 67.5 mg g-1 and excellent long-term desalination/regeneration stability. This work accelerates the application of COF-based materials in the fields of energy storage and water treatment.

8.
Small ; 20(32): e2309397, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38644343

RESUMEN

The utilization of solar-thermal energy and universal cold energy has led to many innovative designs that achieve effective temperature regulation in different application scenarios. Numerous studies on passive solar heating and radiation cooling often operate independently (or actively control the conversion) and lack a cohesive framework for deep connections. This work provides a concise overview of the recent breakthroughs in solar heating and radiation cooling by employing a mechanism material in the application model. Furthermore, the utilization of dynamic Janus-like behavior serves as a novel nexus to elucidate the relationship between solar heating and radiation cooling, allowing for the analysis of dynamic conversion strategies across various applications. Additionally, special discussions are provided to address specific requirements in diverse applications, such as optimizing light transmission for clothing or window glass. Finally, the challenges and opportunities associated with the development of solar heating and radiation cooling applications are underscored, which hold immense potential for substantial carbon emission reduction and environmental preservation. This work aims to ignite interest and lay a solid foundation for researchers to conduct in-depth studies on effective and self-adaptive regulation of cooling and heating.

9.
Small ; 20(28): e2309321, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38528424

RESUMEN

A paucity of redox centers, poor charge transport properties, and low structural stability of organic materials obstruct their use in practical applications. Herein, these issues have been addressed through the use of a redox-active salen-based framework polymer (RSFP) containing multiple redox-active centers in π-conjugated configuration for applications in lithium-ion batteries (LIBs). Based on its unique architecture, RSFP exhibits a superior reversible capacity of 671.8 mAh g-1 at 0.05 A g-1 after 168 charge-discharge cycles. Importantly, the lithiation/de-lithiation performance is enhanced during operation, leading to an unprecedented reversible capacity of 946.2 mAh g-1 after 3500 cycles at 2 A g-1. The structural evolution of RSFP is studied ex situ using X-ray photoelectron spectroscopy, revealing multiple active C═N, C─O, and C═O sites and aromatic sites such as benzene rings. Remarkably, the emergence of C═O originated from C─O is triggered by an electrochemical process, which is beneficial for improving reversible lithiation/delithiation behavior. Furthermore, the respective strong and weak binding interactions between redox centers and lithium ions, corresponding to theoretical capacities of 670.1 and 938.2 mAh g-1, have been identified by density functional theory calculations manifesting 14-electron redox reactions. This work sheds new light on routes for the development of redox-active organic materials for energy storage applications.

10.
ACS Nano ; 18(5): 4308-4319, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38261610

RESUMEN

The intrinsic roadblocks for designing promising Pt-based oxygen reduction reaction (ORR) catalysts emanate from the strong scaling relationship and activity-stability-cost trade-offs. Here, a carbon-supported Pt nanoparticle and a Mn single atom (PtNP-MnSA/C) as in situ constructed PtNP-MnSA pairs are demonstrated to be an efficient catalyst to circumvent the above seesaws with only ∼4 wt % Pt loadings. Experimental and theoretical investigations suggest that MnSA functions not only as the "assist" for Pt sites to cooperatively facilitate the dissociation of O2 due to the strong electronic polarization, affording the dissociative pathway with reduced H2O2 production, but also as an electronic structure "modulator" to downshift the d-band center of Pt sites, alleviating the overbinding of oxygen-containing intermediates. More importantly, MnSA also serves as a "stabilizer" to endow PtNP-MnSA/C with excellent structural stability and low Fenton-like reactivity, resisting the fast demetalation of metal sites. As a result, PtNPs-MnSA/C shows promising ORR performance with a half-wave potential of 0.93 V vs reversible hydrogen electrode and a high mass activity of 1.77 A/mgPt at 0.9 V in acid media, which is 19 times higher than that of commercial Pt/C and only declines by 5% after 80,000 potential cycles. Specifically, PtNPs-MnSA/C reaches a power density of 1214 mW/cm2 at 2.87 A/cm2 in an H2-O2 fuel cell.

11.
Small ; 20(21): e2309353, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098371

RESUMEN

Defect engineering is recognized as an attractive method for modulating the electronic structure and physicochemical characteristics of carbon materials. Exploiting heteroatom-doped porous carbon with copious active sites has attracted great attention for capacitive deionization (CDI). However, traditional methods often rely on the utilization of additional heteroatom sources and strong corrosive activators, suffering from low doping efficiency, insufficient doping level, and potential biotoxicity. Herein, hydrogen-bonded organic frameworks (HOFs) are employed as precursors to synthesize N, O co-doped porous carbon via a simple and green reverse defect engineering strategy, achieving controllable heavy doping of heteroatoms. The N, O co-doping triggers significant pseudocapacitive contribution and the surface pore structure supports the formation of the electric double layer. Therefore, when HOF-derived N, O co-doped carbon is used as CDI electrodes, a superior salt adsorption capacity of 32.29 ± 1.42 mg g-1 and an outstanding maximum salt adsorption rate of 10.58 ± 0.46 mg g-1 min-1 at 1.6 V in 500 mg L-1 NaCl solution are achieved, which are comparable to those of state-of-the-art carbonaceous electrodes. This work exemplifies the effectiveness of the reverse nitrogen-heavy doping strategy on improving the carbon structure, shedding light on the further development of rational designed electrode materials for CDI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA