Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antonie Van Leeuwenhoek ; 117(1): 52, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478113

RESUMEN

In this study, we reported a Gram-stain-negative, ovoid to rod-shaped, atrichous, and facultative anaerobe bacteria strain named YMD61T, which was isolated from the intertidal sediment of Yangma island, China. Growth of strain YMD61T occurred at 10.0-45.0 °C (optimum, 30.0 °C), pH 7.0-10.0 (optimum, 8.0) and with 0-3.0% (w/v) NaCl (optimum, 2.0%). Phylogenetic tree analysis based on 16 S rRNA gene or genomic sequence indicated that strain YMD61T belonged to the genus Fuscovulum and was closely related to Fuscovulum blasticum ATCC 33,485T (96.6% sequence similarity). Genomic analysis indicated that strain YMD61T contains a circular chromosome of 3,895,730 bp with DNA G + C content of 63.3%. The genomic functional analysis indicated that strain YMD61T is a novel sulfur-metabolizing bacteria, which is capable of fixing carbon through an autotrophic pathway by integrating the processes of photosynthesis and sulfur oxidation. The predominant respiratory quinone of YMD61T was ubiquinone-10 (Q-10). The polar lipids of YMD61T contained phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, five unidentified lipids, unidentified aminolipid and unidentified aminophospholipid. The major fatty acids of strain YMD61T contained C18:1ω7c 11-methyl and summed feature 8 (C18:1 ω 7c or/and C18:1 ω 6c). Phylogenetic, physiological, biochemical and morphological analyses suggested that strain YMD61T represents a novel species of the genus Fuscovulum, and the name Fuscovulum ytuae sp. nov. is proposed. The type strain is YMD61T (= MCCC 1K08483T = KCTC 43,537T).


Asunto(s)
Sedimentos Geológicos , Rhodobacteraceae , Sedimentos Geológicos/microbiología , Fosfolípidos/química , Filogenia , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Ácidos Grasos/química , Rhodobacteraceae/genética , China , Azufre , ARN Ribosómico 16S/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38285488

RESUMEN

In this study, we report a Gram-stain-negative, rod-shaped, atrichous and aerobic bacterial strain named CSW1921T, which was isolated from the deep-sea water of a cold seep in South China Sea. Growth of strain CSW1921T occurred at 10.0-35.0 °C (optimum, 30 °C), pH 5.0-10.0 (optimum, pH 8.0-9.0) and with 0-9.0 % (w/v) NaCl (optimum, 1.0-2.0 %). Phylogenetic tree analysis based on 16S rRNA gene sequence or the genomic sequence indicated that strain CSW1921T belonged to the family Rhodobacteraceae and was closely related to Rhodophyticola porphyridii MA-7-27T (97.5 % sequence similarity). Genomic analysis indicated that strain CSW1921T contains a circular chromosome of 3 592 879 bp with G+C content of 60.5 mol%. The predominant respiratory quinone of CSW1921T was ubiquinone-10. The polar lipids of CSW1921T contained phosphatidylglycerol, three unidentified aminolipids, two unidentified phospholipids and two unidentified lipids. The major fatty acids of strain CSW1921T contained C16 : 0, C18 : 1 ω7c 11-methyl and summed feature 8 (C18 : 1 ω7c). The average nucleotide identity, DNA-DNA hybridization and average amino acid identity values between strain CSW1921T and members of its related species were 68.02-69.08 %, 12.7-12.9 % and 46.87-48.08 %, respectively, which were lower than the recommended threshold values for bacterial species or genus delineation. Phylogenetic, physiological, biochemical and morphological analyses suggested that strain CSW1921T represents a novel genus and a novel species of the family Rhodobacteraceae, and the name Fontisubflavum oceani gen. nov., sp. nov. is proposed with the type strain CSW1921T (=MCCC 1K08371T=KCTC 92834T).


Asunto(s)
Ácidos Grasos , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , China
3.
Antonie Van Leeuwenhoek ; 116(12): 1337-1344, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37833447

RESUMEN

In this study, we reported a Gram-stain-negative, rod-shaped, atrichous, and aerobic bacterial strain named YMD87T, which was isolated from the intertidal zone sediment of Chinese Yellow Sea. Growth of strain YMD87T occurred at 10.0-40.0 °C (optimum, 25-30 °C), pH 4.0-12.0 (optimum, 8.0) and with 0-6.0% (w/v) NaCl (optimum, 0.0-2.0%). Phylogenetic tree analysis based on 16S rRNA gene sequence indicated that strain YMD87T belonged to the genus Tropicibacter and was closely related to Tropicibacter alexandrii LMIT003T (97.2% sequence similarity). Genomic analysis indicated that strain YMD87T contains a circular chromosome of 3,932,460 bp with G + C content of 63.8% and three circular plasmids of 116,492 bp, 49,209 bp and 49,673 bp, with G + C content of 64.3%. Genomic functional analysis revealed that strain YMD87T is potential a novel sulfur-metabolizing bacteria. The predominant respiratory quinone of YMD87T was ubiquinone-10 (Q-10). The major polar lipids of YMD87T contained phosphatidylglycerol, phosphatidylethanolamine, five unidentified lipids, five unidentified phospholipids, phosphatidylcholine, unidentified glycolipid and five unidentified aminolipids. The major fatty acids of strain YMD87T contained C12:1 3-OH, C16:0, and summed feature 8 (C18:1 ω7c or/and C18:1 ω6c). Phylogenetic, physiological, biochemical and morphological analyses suggested that strain YMD87T represents a novel species of the genus Tropicibacter, and the name Tropicibacter oceani sp. nov is proposed. The type strain is YMD87T (= MCCC 1K08473T = KCTC 92856 T).


Asunto(s)
Rhodobacteraceae , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , Rhodobacteraceae/clasificación , Rhodobacteraceae/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Azufre , Ubiquinona/química
4.
Fish Shellfish Immunol ; 132: 108461, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36462744

RESUMEN

Vibrio species are important pathogens that affect a wide range of farmed fish. Vaccination is regarded as the most efficacious strategy for fighting bacterial infections. However, the underlying mechanisms remain to be elucidated. In the present study, a comparative transcriptome analysis was performed on the spleens from turbot (Scophthalmus maximus) induced by an inactivated bivalent vaccine (Vibrio anguillarum and Vibrio harveyi, IVVah1) at 4 week and 1 day post further challenge. Strong immune responses were induced by the bivalent vaccine, besides differentially expressed genes (DEGs) associated with adaptive immunity, more innate immunity-related DEGs were detected. At the late stage of vaccination, immune-related molecules associated with pattern recognition receptors, inflammatory factors, complement and coagulation cascade-related components, and antigen processing and presentation were significantly regulated, and some of them were even further up-regulated after the bacterial challenge, indicating the cooperation of multiple immune processes during the vaccine immunization process. In addition to the terms or pathways associated with the immune response, enrichment analysis revealed multiple significantly enriched terms/pathways associated with the response to stimulus/stress, homeostasis, metabolism, and biosynthesis, suggesting that a defensive status was established by the bivalent vaccine. This study furnishes new insights into the internal mechanism of immunity upon a combined vaccine administrating in turbot and lays a foundation for developing highly immunogenic vaccines in teleost.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Vibriosis , Vibrio , Animales , Vibriosis/prevención & control , Vibriosis/veterinaria , Vacunas de Productos Inactivados , Vibrio/fisiología , Perfilación de la Expresión Génica/veterinaria , Inmunidad Innata , Vacunas Combinadas , Proteínas de Peces/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-35850932

RESUMEN

In this study, we describe a Gram-stain-negative, rod-shaped, non-motile and aerobic bacterium, named strain MT3330T, which was isolated from the deep-sea sediment of the Mariana Trench. Growth of MT3330T occurred at 15-40 °C (optimum, 25-30 °C), pH 5.0-10.0 (optimum, 7.0-8.0) and with 0-8.0 % (w/v) NaCl (optimum, 0-2.0 %). The results of phylogenetic analysis based on 16S rRNA gene sequence indicated that MT3330T represented a member of the family Flavobacteriaceae and was most closely related to Zhouia spongiae HN-Y44T (92.3 % sequence similarity). The results of genomic analysis indicated that MT3330T contains a circular chromosome of 4 365 036 bp with a DNA G+C content of 35.2 %. The predominant respiratory quinone of MT3330T was MK-6. The polar lipids of MT3330T included phosphatidylethanolamine, three unidentified amino lipids and four unidentified lipids. The major fatty acids of MT3330T included C15 : 0, iso-C15 : 1G, iso-C15 : 0 3-OH, and iso-C17 : 0 3-OH. On the basis of the results of the phylogenetic, physiological, biochemical and morphological analyses, it is suggested that strain MT3330T represents a novel genus and a novel species of the family Flavobacteriaceae, and the name Abyssalbus ytuae gen. nov., sp. nov. is proposed. The type strain is MT3330T (=MCCC 1K06012T=KCTC 82823T).


Asunto(s)
Flavobacteriaceae , Agua de Mar , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Vitamina K 2/química
6.
Fish Shellfish Immunol ; 122: 153-161, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35150827

RESUMEN

Successful viral infection and multiplication chiefly rely on virus subversion mechanisms against host anti-viral immune responses. In this study, in order to reveal the anti-viral immune-related pathways suppressed by megalocytivirus infection, transcriptome analysis was performed on the head-kidney of turbot (Scophthalmus maximus) infected with lethal dose of RBIV-C1 at 3, 6 and 9 days post challenge (dpc). The results showed that, compared to unchallenged groups, 190, 1220, and 3963 DEGs were detected in RBIV-C1 infected groups at 3, 6 and 9 dpc, respectively, of which, DEGs of complement components and pattern recognition proteins were up-regulated at 3 dpc and down-regulated at 6 and 9 dpc, DEGs of cytokines were up-regulated at 6 dpc and down-regulated at 9 dpc. Expression trend analysis revealed that DEGs of profiles 9 and 13 featured decreased expression patterns and were significantly enriched into 10 immune-related pathways, i.e., complement and coagulation cascades, cytokine-cytokine receptor interaction, chemokine signaling pathway, B/T cell receptor signaling pathway, antigen processing and presentation, and so on. Further co-expression network analysis (WGCNA) revealed positive correlated innate immune related pathways at 3 and 6 dpc, and negative correlated innate and adaptive immune related pathways at 9 dpc. This study revealed a set of anti-viral immune genes/pathways that would also be potential targets subverted by RBIV-C1 for immune evasion, which can serve as a valuable resource for future studies on the molecular mechanisms of anti-viral immune defense of turbot and immune escape of megalocytivirus.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Iridoviridae , Animales , Antivirales , Peces Planos/genética , Perfilación de la Expresión Génica/veterinaria , Evasión Inmune , Iridoviridae/fisiología , Transcriptoma
7.
Artículo en Inglés | MEDLINE | ID: mdl-34431767

RESUMEN

In this study, we report a Gram-stain-negative, rod-shaped, non-pigmented, motile and aerobic bacterium named strain MTZ26T, which was isolated from deep-sea sediment sampled at a cold seep in the South China Sea. Growth of strain MTZ26T occurred at 4-40 °C (optimum, 25-30 °C), pH 6.0-10.0 (optimum, 7.0-8.0) and with 1.0-11.0 % (w/v) NaCl (optimum, 6.0-8.0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MTZ26T belonged to the genus Psychrosphaera and was closely related to Psychrosphaera aestuarii PSC101T (97.5 % sequence similarity) and Psychrosphaera haliotis KDW4T (97.5 %). Genomic analysis indicated that strain MTZ26T contains a circular chromosome of 3 331 814 bp with G+C content of 42.2 mol%. The predominant respiratory quinone of MTZ26T was ubiquinone-8. The polar lipids of MTZ26T contained phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminophospholipid and one unidentified phospholipid. The major fatty acids of strain MTZ26T contained C15:0, C16:0, C17:0, C17 : 1 ω8c, C10 : 0 3-OH, C11 : 0 3-OH, C15 : 1 ω8c and summed feature 8 (C18 : 1 ω7c or/and C18 : 1 ω6c). Results of phylogenetic, physiological, biochemical and morphological analyses suggested that strain MTZ26T represents a novel species of the genus Psychrosphaera, and the name Psychrosphaera ytuae sp. nov. is proposed with the type strain MTZ26T (=MCCC 1K05568T=JCM 34321T).


Asunto(s)
Gammaproteobacteria/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Gammaproteobacteria/aislamiento & purificación , Fosfolípidos/química , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Ubiquinona/química
8.
Life Sci ; 264: 118606, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33091444

RESUMEN

AIMS: Sepsis is a severe endothelial dysfunction syndrome. The role of endothelial nitric oxide synthase (eNOS) in endothelial dysfunction induced by sepsis is controversial. To explore the role of eNOS in vascular dysfunction. MAIN METHODS: The effect of sepsis on vasodilation and eNOS levels was examined in septic mouse arteries and in cell models. KEY FINDINGS: In early sepsis mouse arteries, endothelium-dependent relaxation decreased and phosphorylation of the inhibitory Thr495 site in endothelial nitric oxide synthase increased. Mechanically, the phosphorylation of endothelial nitric oxide synthase at Thr497 in bovine aortic endothelial cells occurred in a protein kinase C-α dependent manner. In late sepsis, both nitric oxide-dependent relaxation responses and endothelial nitric oxide synthase levels were decreased in septic mice arteries. Endothelial nitric oxide synthase levels expression levels decreased in tumor necrosis factor-α-treated human umbilical vein endothelial cells and this could be prevented by the ubiquitin proteasome inhibitor (MG-132). MG-132 could reverse the decrease in endothelial nitric oxide synthase expression and improve nitric oxide-dependent vasodilator dysfunction in septic mice arteries. SIGNIFICANCE: These data indicate that vasodilator dysfunction is induced by the increased phosphorylation of endothelial nitric oxide synthase in early sepsis and its degradation in late sepsis.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Sepsis/enzimología , Sepsis/fisiopatología , Vasodilatación/fisiología , Acetilcolina/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/enzimología , Aorta Torácica/fisiopatología , Bovinos , Relación Dosis-Respuesta a Droga , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lipopolisacáridos/toxicidad , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/enzimología , Arterias Mesentéricas/fisiopatología , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/genética , Técnicas de Cultivo de Órganos , Sepsis/inducido químicamente , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
9.
Biochem Mol Biol Educ ; 46(4): 373-381, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29989352

RESUMEN

Medical laboratory technology major was set up to meet rapid development of science and medical research technology in 2013. Students majoring in medical laboratory had learnt a lot of techniques distributed among different specialized courses. But, they did not understand why they had to learn these techniques and how they were applied in a real-world research setting. In a one-month innovation experimental practice described herein, students had learnt to induce, purify and identify an unknown glycoprotein from whole cell lysate using conA-based affinity chromatography and mass spectrometry. Unlike in a traditional cookbook-style experiment, students chose a research subject on their own and did experiment using their selected variables. Over the one-month laboratory periods, students used sterile technique to cultivate cells, induced glycoprotein expression using LPS and IFN-γ, purified glycoprotein from cell lysate using agarose-conA beads, identified a glycoprotein via mass spectrometry, and confirmed the result using western blotting. At end of the practice, students were asked to evaluate their experiences via an anonymous survey. All students declared that this experimental practice was interesting and meaningful to them. The process of completing the project was to apply the learnt techniques to real-world biochemistry research, so they became aware of the importance and significance of techniques. © 2018 by The International Union of Biochemistry and Molecular Biology, 46:373-381, 2018.


Asunto(s)
Extractos Celulares/química , Concanavalina A/química , Glicoproteínas/análisis , Animales , Células Cultivadas , Cromatografía de Afinidad , Humanos , Aprendizaje , Espectrometría de Masas , Ratones , Células RAW 264.7 , Sefarosa/química , Estudiantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...