Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 10(1): e0252521, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107330

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) O26 is the predominant non-O157 serogroup causing hemolytic uremic syndrome worldwide. Moreover, the serogroup is highly dynamic and harbors several pathogenic clones. Here, we investigated the phylogenetic relationship of STEC O26 at a global level based on 1,367 strains from 20 countries deposited in NCBI and Enterobase databases. The whole-genome-based analysis identified a new genetic clade, called ST29C4. The new clade was unique in terms of multilocus sequence type (ST29), CRISPR (group Ia), and dominant plasmid gene profile (ehxA+/katP-/espP-/etpD-). Moreover, the combination of multiple typing methods (core genome single nucleotide polymorphism [SNP] typing, CRISPR typing, and virulence genes analysis) demonstrated that this new lineage ST29C4 was in the intermediate phylogenetic position between ST29C3 and other non-ST29C3 strains. Besides, we observed that ST29C4 harbored extraintestinal pathogenic E. coli (ExPEC)-related virulence gene (VG), tsh, and STEC-associated VG, stx2a, suggesting the emergence of a hybrid pathogen. The ST29C4 strains also exhibited high similarity in stx2a-prophage and integrase with the O104:H4 strain, further demonstrating its potential risk to human health. Collectively, the large-scale phylogenetic analysis extends the understanding of the clonal structure of O26 strains and provides new insights for O26 strain microevolution. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) O26 is the second prevalent STEC serogroup only to O157, which can cause a series of diseases ranging from mild diarrhea to life-threatening hemolytic uremic syndrome (HUS). The serogroup is highly diverse and multiple clones are characterized, including ST29C1-C3 and ST21C1-C2. However, the phylogenetic relationship of these clones remains fully unclear. In this study, we revealed a new genetic clade among O26 strains, ST29C4, which was unique in terms of CRISPR, multilocus sequence type (MLST), and plasmid gene profile (PGP). Moreover, the combination of multiple typing methods demonstrated that this new clone was located in the intermediate phylogenetic position between ST29C3 and other non-ST29C3 strains (i.e., ST29C1-C2 and ST21C1-C2). Overall, the large-scale phylogenetic analysis extends our current understanding of O26 microevolution.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Filogenia , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Proteínas de Escherichia coli/genética , Humanos , Tipificación de Secuencias Multilocus , Plásmidos/genética , Polimorfismo de Nucleótido Simple , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/genética
2.
Chemosphere ; 282: 131100, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34119736

RESUMEN

The oxidative degradation of atrazine (ATR) using bimetallic Bi/Fe0 nanoparticles cooperated with citric acid (CA) and sodium citrate (NaCA) without extra addition of H2O2 or another oxidant was conducted. Almost 73% of ATR was removed in Bi/Fe0+NaCA + CA buffer system in 3 h, and the bimetallic Bi/Fe0 performs high stability and long service life in the buffer system according to the results of cyclic degradation experiments. The citrate iron complex of Fe(II)[Cit]- played the key role for the degradation process since it could quickly react with the generated H2O2 to produce free radicals in the Bi/Fe0+NaCA + CA system, which broadened the applicable pH range of the traditional Fenton reaction and promoted the oxidative degradation process of ATR. The possible degradation pathways of ATR were also investigated. In the Bi/Fe0+NaCA + CA buffer system, twelve kinds of ATR intermediate products were detected, of which the main products were dechlorination products and alkyl oxidative products. Due to the pH controllable of the Bi/Fe0+NaCA + CA system, it could reduce the acidity impact on the environment and makes the additional impact on the environment lower. Therefore, this work provides a new strategy for the degradation of ATR.


Asunto(s)
Atrazina , Hierro , Ácido Cítrico , Peróxido de Hidrógeno , Oxidación-Reducción
3.
Front Microbiol ; 11: 1708, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793166

RESUMEN

The hypervariable nature of clustered regularly interspaced short palindromic repeats (CRISPRs) makes them valuable biomarkers for subtyping and epidemiological investigation of Escherichia coli. Shiga toxin-producing E. coli (STEC) serogroup O80 is one hybrid pathotype that is emerging recently in Europe and is involved in hemolytic uremic syndrome with bacteremia. However, whether STEC O80 strains can be genotyped using CRISPR has not been evaluated. In this study, we aimed to characterize the genetic diversity of 81 E. coli serogroup O80 isolates deposited in the National Center for Biotechnology Information databases using CRISPR typing and to explore the association between virulence potential and CRISPR types (CTs). A total of 21 CTs were identified in 80 O80 strains. CRISRP typing provided discrimination with variants of a single serotype, which suggested a stronger discriminatory power. Based on CRISPR spacer profiles, 70 O80:H2 isolates were further divided into four lineages (lineage LI, LII, LIII, and LIV), which correlated well with whole-genome single nucleotide polymorphisms typing and virulence gene profiles. Moreover, the association between CRISPR lineages and virulence gene profiles hinted that STEC O80:H2 strains may originate from O80:H19 or O80:H26 and that lineage LI may have been evolved from lineage LII. CT2 and CT13 were shared by human and cattle isolates, suggesting that there might be the potential transmission between cattle and human. Collectively, CRISPR typing is one technology that can be used to monitor the transmission of STEC O80 strains and provide new insights into microevolution of serogroup O80.

4.
J Hazard Mater ; 384: 121478, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31653408

RESUMEN

A novel Pt assisted self-modified Bi2WO6 composites (Pt/Bi-BWO) with high oxygen vacancies concentration was successfully fabricated via a simple in-situ NaBH4 reduction method in presence of H2PtCl6•6H2O. The Pt/Bi-BWO performed excellent photocatalytic activity on the degradation of gaseous toluene under visible light illumination. The photocatalytic reaction rate of 0.15% Pt/Bi-BWO was 2.88 times higher than that of Bi2WO6. Over 90% gas phase toluene was removed by 0.15% Pt/Bi-BWO in one hour and over 80% of which was degraded into CO2 and H2O. The Pt/Bi-BWO also performed great stability confirmed by circulating runs test. The mechanism of the promotion was explored by electron paramagnetic resonance (EPR) and DFT calculations. The produced oxygen vacancies were below conduction band (CB) of Bi2WO6, leading to a narrowed band gap. Meantime, the generated oxygen vacancies could activate O2 to enhance the production of reactive oxygen species (ROS), such as O2- and OH. In addition, the added Pt could act as electron trap to suppress the recombination of electrons-holes pairs. In a word, this work produced a novel simply made photocatalyst to remove volatile organic compounds.

5.
Infect Genet Evol ; 74: 103916, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31195154

RESUMEN

E. coli of phylogenetic group B2 is responsible for many extraintestinal infections, posing a great threat to health. The relatively polymorphic nature of CRISPR in phylogenetically related E. coli strains makes them potential markers for bacterial typing and evolutionary studies. In the current work, we investigated the occurrence and diversity of CRISPR/Cas system and explored its potential for genotyping. Type I-F CRISPR/Cas systems were found in 413 of 1190 strains of E. coli and exhibited the clustering within certain CCs and STs. And CRISPR spacer contents correlated well with MLST types. The divergence analysis of CRISPR showed stronger discriminatory power than MLST, and CRISPR polymorphism was instrumental for differentiating highly closely related strains. The timeline of spacer acquisition and deletion provided important information for inferring the evolution model between distinct serotypes. Identical spacer sequences were shared by strains with the same H-antigen type but not strains with the same O-antigen type. The homology between spacers and antibiotic-resistant plasmids demonstrated the role of Type I-F system in limiting the acquisition of antimicrobial resistance. Collectively, our data presents the dynamic nature of Type I-F CRISPR in E. coli of phylogenetic group B2 and provides new insights into the application of CRISPR-based typing in the species.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli/clasificación , Tipificación de Secuencias Multilocus/métodos , Polimorfismo Genético , ADN Bacteriano/genética , Escherichia coli/genética , Evolución Molecular , Técnicas de Genotipaje , Humanos , Filogenia , Plásmidos/genética
6.
Mol Genet Genomics ; 294(5): 1263-1275, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31134321

RESUMEN

Clostridium perfringens is an important pathogen of human and livestock infections, posing a threat to health. The horizontal gene transfer (HGT) of plasmids that carry toxin-related genes is involved in C. perfringens pathogenicity. The CRISPR/Cas system, which has been identified in a wide range of prokaryotes, provides acquired immunity against HGT. However, information about the CRISPR/Cas system in Clostridium perfringens is still limited. In this study, 111 C. perfringens strains with publicly available genomes were used to analyze the occurrence and diversity of CRISPR/Cas system and evaluate the potential of CRISPR-based genotyping in this multi-host pathogen. A total of 59 out of the 111 genomes harbored at least one confirmed CRISPR array. Four CRISPR/Cas system subtypes, including subtypes IB, IIA, IIC, and IIID systems, were identified in 32 strains. Subtype IB system was the most prevalent in this species, which was subdivided into four subgroups displaying subgroup specificity in terms of cas gene content, repeat sequence content, and PAM. We showed that the CRISPR spacer polymorphism can be used for evolutionary studies, and that it can provide discriminatory power for typing strains. Nevertheless, the application of this approach was largely limited to strains that contain the CRISPR/Cas system. Spacer origin analysis revealed that approximately one-fifth of spacers showed significant matches to plasmids and phages, thereby suggesting the implication of CRISPR/Cas systems in controlling HGT. Collectively, our results provide new insights into the diversity and evolution of CRISPR/Cas system in C. perfringens.


Asunto(s)
Sistemas CRISPR-Cas/genética , Clostridium perfringens/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Bacteriófagos/genética , Biología Computacional/métodos , Transferencia de Gen Horizontal/genética , Genoma Bacteriano/genética , Filogenia , Plásmidos/genética , Polimorfismo Genético/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...