Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Sci Data ; 11(1): 461, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710675

Oriental tobacco budworm (Helicoverpa assulta) and cotton bollworm (Helicoverpa armigera) are two closely related species within the genus Helicoverpa. They have similar appearances and consistent damage patterns, often leading to confusion. However, the cotton bollworm is a typical polyphagous insect, while the oriental tobacco budworm belongs to the oligophagous insects. In this study, we used Nanopore, PacBio, and Illumina platforms to sequence the genome of H. assulta and used Hifiasm to create a haplotype-resolved draft genome. The Hi-C technique helped anchor 33 primary contigs to 32 chromosomes, including two sex chromosomes, Z and W. The final primary haploid genome assembly was approximately 415.19 Mb in length. BUSCO analysis revealed a high degree of completeness, with 99.0% gene coverage in this genome assembly. The repeat sequences constituted 38.39% of the genome assembly, and we annotated 17093 protein-coding genes. The high-quality genome assembly of the oriental tobacco budworm serves as a valuable genetic resource that enhances our comprehension of how they select hosts in a complex odour environment. It will also aid in developing an effective control policy.


Genome, Insect , Haplotypes , Moths , Animals , Moths/genetics , Chromosomes, Insect , Helicoverpa armigera
2.
BMC Plant Biol ; 24(1): 473, 2024 May 30.
Article En | MEDLINE | ID: mdl-38811869

BACKGROUND: Carbon nano sol (CNS) can markedly affect the plant growth and development. However, few systematic analyses have been conducted on the underlying regulatory mechanisms in plants, including tobacco (Nicotiana tabacum L.). RESULTS: Integrated analyses of phenome, ionome, transcriptome, and metabolome were performed in this study to elucidate the physiological and molecular mechanisms underlying the CNS-promoting growth of tobacco plants. We found that 0.3% CNS, facilitating the shoot and root growth of tobacco plants, significantly increased shoot potassium concentrations. Antioxidant, metabolite, and phytohormone profiles showed that 0.3% CNS obviously reduced reactive oxygen species production and increased antioxidant enzyme activity and auxin accumulation. Comparative transcriptomics revealed that the GO and KEGG terms involving responses to oxidative stress, DNA binding, and photosynthesis were highly enriched in response to exogenous CNS application. Differential expression profiling showed that NtNPF7.3/NtNRT1.5, potentially involved in potassium/auxin transport, was significantly upregulated under the 0.3% CNS treatment. High-resolution metabolic fingerprints showed that 141 and 163 metabolites, some of which were proposed as growth regulators, were differentially accumulated in the roots and shoots under the 0.3% CNS treatment, respectively. CONCLUSIONS: Taken together, this study revealed the physiological and molecular mechanism underlying CNS-mediated growth promotion in tobacco plants, and these findings provide potential support for improving plant growth through the use of CNS.


Carbon , Metabolomics , Nicotiana , Plant Growth Regulators , Transcriptome , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Carbon/metabolism , Plant Growth Regulators/metabolism , Gene Expression Profiling , Metabolome , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Shoots/metabolism , Plant Shoots/growth & development , Plant Shoots/genetics
3.
Ecotoxicol Environ Saf ; 271: 115885, 2024 Feb.
Article En | MEDLINE | ID: mdl-38194857

Tobacco plants (Nicotiana tabacum L.) exhibit considerable potential for phytoremediation of soil cadmium (Cd) pollutants, owing to their substantial biomass and efficient metal accumulation capabilities. The reduction of Cd accumulation in tobacco holds promise for minimizing Cd intake in individuals exposed to cigar smoking. NRAMP transporters are pivotal in the processes of Cd accumulation and resistance in plants; however, limited research has explored the functions of NRAMPs in tobacco plants. In this investigation, we focused on NtNRAMP6c, one of the three homologs of NRAMP6 in tobacco. We observed a robust induction of NtNRAMP6c expression in response to both Cd toxicity and iron (Fe) deficiency, with the highest expression levels detected in the roots. Subsequent subcellular localization and heterologous expression analyses disclosed that NtNRAMP6c functions as a plasma membrane-localized Cd transporter. Moreover, its overexpression significantly heightened the sensitivity of yeast cells to Cd toxicity. Through CRISPR-Cas9-mediated knockout of NtNRAMP6c, we achieved a reduction in Cd accumulation and an enhancement in Cd resistance in tobacco plants. Comparative transcriptomic analysis unveiled substantial alterations in the transcriptional profiles of genes associated with metal ion transport, photosynthesis, and macromolecule catabolism upon NtNRAMP6c knockout. Furthermore, our study employed plant metabolomics and rhizosphere metagenomics to demonstrate that NtNRAMP6c knockout led to changes in phytohormone homeostasis, as well as shifts in the composition and abundance of microbial communities. These findings bear significant biological implications for the utilization of tobacco in phytoremediation strategies targeting Cd pollutants in contaminated soils, and concurrently, in mitigating Cd accumulation in tobacco production destined for cigar consumption.


Environmental Pollutants , Soil Pollutants , Humans , Cadmium/metabolism , Nicotiana/genetics , Iron/metabolism , Plants, Genetically Modified/metabolism , Environmental Pollutants/analysis , Plant Roots/metabolism , Soil Pollutants/analysis
4.
BMC Med ; 21(1): 270, 2023 07 24.
Article En | MEDLINE | ID: mdl-37488510

BACKGROUND: The introduction of multiparameter MRI and novel biomarkers has greatly improved the prediction of clinically significant prostate cancer (csPCa). However, decision-making regarding prostate biopsy and prebiopsy examinations is still difficult. We aimed to establish a quick and economic tool to improve the detection of csPCa based on routinely performed clinical examinations through an automated machine learning platform (AutoML). METHODS: This study included a multicenter retrospective cohort and two prospective cohorts with 4747 cases from 9 hospitals across China. The multimodal data, including demographics, clinical characteristics, laboratory tests, and ultrasound reports, of consecutive participants were retrieved using extract-transform-load tools. AutoML was applied to explore potential data processing patterns and the most suitable algorithm to build the Prostate Cancer Artificial Intelligence Diagnostic System (PCAIDS). The diagnostic performance was determined by the receiver operating characteristic curve (ROC) for discriminating csPCa from insignificant prostate cancer (PCa) and benign disease. The clinical utility was evaluated by decision curve analysis (DCA) and waterfall plots. RESULTS: The random forest algorithm was applied in the feature selection, and the AutoML algorithm was applied for model establishment. The area under the curve (AUC) value in identifying csPCa was 0.853 in the training cohort, 0.820 in the validation cohort, 0.807 in the Changhai prospective cohort, and 0.850 in the Zhongda prospective cohort. DCA showed that the PCAIDS was superior to PSA or fPSA/tPSA for diagnosing csPCa with a higher net benefit for all threshold probabilities in all cohorts. Setting a fixed sensitivity of 95%, a total of 32.2%, 17.6%, and 26.3% of unnecessary biopsies could be avoided with less than 5% of csPCa missed in the validation cohort, Changhai and Zhongda prospective cohorts, respectively. CONCLUSIONS: The PCAIDS was an effective tool to inform decision-making regarding the need for prostate biopsy and prebiopsy examinations such as mpMRI. Further prospective and international studies are warranted to validate the findings of this study. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2100048428. Registered on 06 July 2021.


Artificial Intelligence , Prostatic Neoplasms , Male , Humans , Retrospective Studies , Algorithms , Machine Learning
5.
Int J Cancer ; 152(8): 1719-1727, 2023 04 15.
Article En | MEDLINE | ID: mdl-36454163

The study aimed at evaluating the performance of urinary exosomal prostate-specific antigen (UE-PSA) to predict the results of initial prostate biopsies and discriminate clinically significant prostate cancer (Gleason score ≥ 7, csPCa) from nonsignificant PCa (Gleason score < 7, nsPCa) plus benign patients. Two hundred seventy-two consecutive participants were admitted who underwent a prostate biopsy. The UE-PSA expression was detected by enzyme-linked immunosorbent assay (ELISA). The predictive power and clinical value of UE-PSA was assessed by receiver operating characteristic (ROC), decision curve analysis (DCA) and waterfall plots. UE-PSA was upregulated in PCa compared to benign patients (P < .001) and csPCa compared to nsPCa plus benign patients (P < .001). UE-PSA achieved an AUC of 0.953 (0.905-0.989) in distinguishing PCa from benign patients and an AUC of 0.879 (0.808-0.941) in predicting csPCa from nsPCa plus benign patients. These results were validated in an additional multicenter cohort. In addition, DCA showed that UE-PSA achieved the highest net benefit at almost any threshold probability compared to tPSA and %fPSA. As the waterfall plot showed, the UE-PSA assay could avoid 57.6% (155 cases) and 34.6% (93 cases) unnecessary biopsies while only missing 2.6% (7 cases) and 1.5% (4 cases) of the cases of csPCa at the cutoff value of 90% and 95% sensitivity, respectively. We validated that UE-PSA presented great diagnostic power and clinical utility to diagnose PCa and csPCa. UE-PSA could be a promising noninvasive biomarker to improve PCa detection.


Prostate-Specific Antigen , Prostatic Neoplasms , Male , Humans , Prostate-Specific Antigen/analysis , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Prostate/pathology , Biopsy , Neoplasm Grading , ROC Curve
6.
Environ Res ; 216(Pt 4): 114848, 2023 01 01.
Article En | MEDLINE | ID: mdl-36403441

Root-knot nematode (RKN) disease is a destructive soil disease that affects crop health and causes huge losses in crop production. To explore the relationships between soil environments, rhizobacterial communities, and plant health, rhizosphere bacterial communities were analyzed using metagenomic sequencing in tobacco samples with different grades of RKN disease. The results showed that the community structure and function of the plant rhizosphere were significantly correlated to the RKN disease. RKN density and urease content were key factors affecting the rhizosphere bacterial community. Urease accelerated the catabolism of urea and led to the production of high concentrations of ammonia, which directly suppressed the development of RKNs or by improving the nutritional and growth status of microorganisms that were antagonistic to RKNs. Further experiments showed that the suppression role of ammonia should be attributed to the direct inhibition of NH3. The bacterial members that were positively correlated with RKN density, contained many plant cell wall degrading enzymes, which might destroy plant cell walls and promote the colonization of RKN in tobacco roots. The analysis of metatranscriptome and metabolism demonstrated the role of these cell wall degrading enzymes. This study offers a comprehensive insight into the relationships between RKNs, bacteria, and soil environmental factors and provides new ideas for the biological control of RKNs.


Microbiota , Tylenchoidea , Animals , Tylenchoidea/physiology , Nicotiana , Rhizosphere , Ammonia , Urease/metabolism , Plant Diseases , Plant Roots/metabolism , Bacteria/genetics , Soil
7.
Front Plant Sci ; 13: 971400, 2022.
Article En | MEDLINE | ID: mdl-36212334

Long non-coding RNAs (lncRNAs) regulate many biological processes in plants, including defense against pathogens and herbivores. Recently, many small ORFs embedded in lncRNAs have been identified to encode biologically functional peptides (small ORF-encoded peptides [SEPs]) in many species. However, it is unknown whether lncRNAs mediate defense against herbivore attack and whether there are novel functional SEPs for these lncRNAs. By sequencing Spodoptera litura-treated leaves at six time-points in Nicotiana tabacum, 22,436 lncRNAs were identified, of which 787 were differentially expressed. Using a comprehensive mass spectrometry (MS) pipeline, 302 novel SEPs derived from 115 tobacco lncRNAs were identified. Moreover, 61 SEPs showed differential expression after S. litura attack. Importantly, several of these peptides were characterized through 3D structure prediction, subcellular localization validation by laser confocal microscopy, and western blotting. Subsequent bioinformatic analysis revealed some specific chemical and physical properties of these novel SEPs, which probably represent the largest number of SEPs identified in plants to date. Our study not only identifies potential lncRNA regulators of plant response to herbivore attack but also serves as a valuable resource for the functional characterization of SEP-encoding lncRNAs.

8.
Front Plant Sci ; 13: 1023837, 2022.
Article En | MEDLINE | ID: mdl-36186049

Root-associated compartments, including the rhizosphere, rhizoplane, and endosphere, live with diverse microbial communities which profoundly affect plant growth and health. However, a systematic understanding of the microbiome assembly across the rhizosphere, rhizoplane, and endosphere under pathogen invasion remains elusive. Using 16S high-throughput sequencing, we studied how bacterial wilt disease affected the variation and assembly of the three continuous root-associated microbiomes of tobacco. The results indicated that microorganisms were gradually filtered from the rhizosphere to the endosphere. With the pathogen invasion, the rhizosphere, rhizoplane and endosphere microbiomes selected and recruited different beneficial bacterial taxa. Some recruited bacteria were also identified as keystone members in networks (i.e., Bosea in the endosphere). The microbiomes of endosphere and rhizoplane were more sensitive to plant disease than the rhizosphere microbiome. Still, response strategies of the rhizoplane and endosphere to disease were obviously different. Microbial networks of the rhizoplane became complex in diseased samples and genes involved in sporulation formation and cell cycle were enriched. However, microbial networks of the diseased endosphere were disrupted, and functional genes related to nitrogen utilization and chemotaxis were significantly increased, indicating the importance of nitrogen resources supply of plants for the endosphere microbiome under pathogen invasion. Our results provide novel insights for understanding the different responses of the root-associated microbiomes to plant disease.

9.
Cancer Biol Med ; 19(9)2022 Aug 17.
Article En | MEDLINE | ID: mdl-35972052

OBJECTIVE: This study aimed to evaluate the effects of mitochondrial pyruvate carrier (MPC) blockade on the sensitivity of detection and radiotherapy of prostate cancer (PCa). METHODS: We investigated glycolysis reprogramming and MPC changes in patients with PCa by using metabolic profiling, RNA-Seq, and tissue microarrays. Transient blockade of pyruvate influx into mitochondria was observed in cellular studies to detect its different effects on prostate carcinoma cells and benign prostate cells. Xenograft mouse models were injected with an MPC inhibitor to evaluate the sensitivity of 18F-fluorodeoxyglucose positron emission tomography with computed tomography and radiotherapy of PCa. Furthermore, the molecular mechanism of this different effect of transient blockage towards benign prostate cells and prostate cancer cells was studied in vitro. RESULTS: MPC was elevated in PCa tissue compared with benign prostate tissue, but decreased during cancer progression. The transient blockade increased PCa cell proliferation while decreasing benign prostate cell proliferation, thus increasing the sensitivity of PCa cells to 18F-PET/CT (SUVavg, P = 0.016; SUVmax, P = 0.03) and radiotherapy (P < 0.01). This differential effect of MPC on PCa and benign prostate cells was dependent on regulation by a VDAC1-MPC-mitochondrial homeostasis-glycolysis pathway. CONCLUSIONS: Blockade of pyruvate influx into mitochondria increased glycolysis levels in PCa but not in non-carcinoma prostate tissue. This transient blockage sensitized PCa to both detection and radiotherapy, thus indicating that glycolytic potential is a novel mechanism underlying PCa progression. The change in the mitochondrial pyruvate influx caused by transient MPC blockade provides a critical target for PCa diagnosis and treatment.


Prostatic Neoplasms , Pyruvic Acid , Animals , Disease Models, Animal , Fluorodeoxyglucose F18/metabolism , Fluorodeoxyglucose F18/pharmacology , Glycolysis , Humans , Male , Mice , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/pharmacology , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/pharmacology , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Pyruvic Acid/metabolism , Pyruvic Acid/pharmacology
10.
Article En | MEDLINE | ID: mdl-35785645

Extracellular vesicles (EVs) are membranous vesicles released by various cells, and are involved in intercellular communication and disease progression. EVs that are isolated from urine are good indicators of urinary system diseases and help certain urological studies. During isolation of urine EVs, Dithiothreitol (DTT) is widely used to reduce the contamination of the major contaminant Tamm-Horsefall protein (THP),which is the most abundant protein in the human urine and the most difficult contaminant to remove in the isolation of urine EVs. Unfortunately, DTT can interfere with subsequent analysis due to its strong reducing ability and cannot completely remove THP. To optimize the urine EV isolation strategy, we compared two pretreatment protocols: incubating urine with NaCl and DTT before centrifugation. After a series of analyses by nanoparticle tracking analysis (NTA), western blotting (WB), and transmission electron microscopy (TEM), we found that NaCl removed more THP than DTT in a low-speed centrifugation step and that the residual EVs also had lower THP contamination post NaCl treatment. Remarkably, the yield of EVs obtained via the salting-out method was significantly higher than those obtained by the other methods (P = 0.001). Our study is the first to demonstrate that the salting-out method is better than the traditional DTT method in terms of efficiency in removing THP and EV yields.


Extracellular Vesicles , Sodium Chloride , Blotting, Western , Extracellular Vesicles/chemistry , Humans , Microscopy, Electron, Transmission , Proteins/analysis
11.
Environ Res ; 214(Pt 1): 113902, 2022 11.
Article En | MEDLINE | ID: mdl-35839908

Microbial degradation of organic compounds is an environmentally benign and energy efficient part in product processing. Fermentation of plant leaves involves enzymatic actions of many microorganisms. However, microbes and enzymes discovered from natural degradation communities were still limited by cultural methods. In this study, we used a metagenomics sequence-guided strategy to identify the microbes and enzymes involved in compound degradation and explore the potential synergy among community members in fermented tobacco leaves. The results showed that contents of protein, starch, pectin, lignin, and cellulose varied in fermented leaves from different growing sites. The different compound contents were closely related to taxonomic composition and functional profiles of foliar microbial communities. Microbial communities showed significant correlations with protein, lignin, and cellulose. Vital species for degradations of protein (Bacillus cereus and Terribacillus aidingensis), lignin (Klebsiella pneumoniae and Pantoea ananatis) and cellulose (Pseudomonas putida and Sphingomonas sp. Leaf20) were identified and relating hydrolytic enzymes were annotated. Further, twenty-two metagenome-assembled genomes (MAGs) were assembled from metagenomes and six potential cellulolytic genomes were used to reconstruct the cellulose-degrading process, revealing the potential metabolic cooperation related to cellulose degradation. Our work should deepen the understanding of microbial roles in plant fermentation and provide a new viewpoint for applying microbial consortia to convert plant organic components to small molecules.


Metagenome , Metagenomics , Cellulose , Lignin , Microbial Consortia , Plant Leaves
12.
Front Plant Sci ; 13: 809435, 2022.
Article En | MEDLINE | ID: mdl-35237286

Long non-coding RNAs (lncRNAs) regulate gene expression and are crucial for plant growth and development. However, the mechanisms underlying the effects of activated lncRNAs on axillary bud development remain largely unknown. By lncRNA transcriptomes of axillary buds in topped and untopped tobacco plants, we identified a total of 13,694 lncRNAs. LncRNA analysis indicated that the promoted growth of axillary bud by topping might be partially ascribed to the genes related to hormone signal transduction and glycometabolism, trans-regulated by differentially expressed lncRNAs, such as MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1. Metabolite profiling indicated that auxin, abscisic acid and gibberellin were decreased in axillary buds of topped tobacco lines, while cytokinin was increased, consistent with the expression levels of related lncRNAs. MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1 were shown to be influenced by hormones and sucrose treatments, and were associated with changes of axillary bud growth in the overexpression of NtCCD8 plants (with reduced axillary buds) and RNA interference of NtTB1 plants (with increased axillary buds). Moreover, MSTRG.28151.1 was identified as the antisense lncRNA of NtTB1. Silencing of MSTRG.28151.1 in tobacco significantly attenuated the expression of NtTB1 and resulted in larger axillary buds, suggesting the vital function of MSTRG.28151.1 axillary bud developmen by NtTB1. Our findings shed light on lncRNA-mRNA interactions and their functional roles in axillary bud growth, which would improve our understanding of lncRNAs as important regulators of axillary bud development and plant architecture.

13.
Infect Genet Evol ; 98: 105214, 2022 03.
Article En | MEDLINE | ID: mdl-35051652

A novel Norovirus (NoV) was identified by viral metagenomic analysis in fox fecal samples from the Xinjiang Uygur Autonomous Region of China. The virus exhibited typical genomic characteristics of NoVs. It was closely related to the canine NoV GVII strains with 86.0-86.2% and 91.9% amino acid identities in the capsid protein VP1 and RNA-dependent RNA polymerase (RdRp), respectively. The fox NoV clustered phylogenetically with the two canine NoV GVII strains, and it was distant from other NoVs. According to the new classification criteria of NoVs, the new fox NoV belongs to the same genotype as GVII, similar to canine GVII NoVs. Moreover, key amino acid residues in the Histo-blood group antigen (HBGA) binding sites and the HBGA binding pattern of the fox NoV differed significantly from those of human and canine GVII NoVs. This study identified a new GVII norovirus from wild foxes in China. These findings enrich our understanding of the diversity of NoVs and provide further evidence regarding the genetic heterogeneity of NoVs in carnivores.


Foxes , Norovirus/isolation & purification , Animals , China , Feces/virology , Norovirus/classification
14.
Aesthetic Plast Surg ; 46(1): 480-488, 2022 Feb.
Article En | MEDLINE | ID: mdl-34595594

PURPOSE: The citation count of a scientific article is considered as the recognition it received from this field. The purpose of this bibliometric analysis was to identify the top 100 most-cited scientific articles in penile surgical reconstruction. METHODS: The Web of Science database was used to extract the top 100 most-cited articles. Individual articles were reviewed to identify the authorship, published journal, journal impact factor (IF), primary disease, article type, institution and country of origin, and year of publication. RESULTS: The top 100 most-cited articles were published between 1947 and 2013. The number of citations ranged from 23 to 233. Journal of Urology contributed the most articles (n = 36). Articles with a high level of evidence like prospective analysis (n = 5), systematic review and meta-analysis (n = 2), and guideline (n = 1) were all published after 2000. The average citation per year of articles published in high-IF journals was significantly higher than that of other articles (p = 0.0129). There was a positive linear correlation between citation count per year and publication year (r2 = 0.26, p < 0.001). Among the top 100 articles, 74 articles were interlinked via citation of each other. The major topic of co-citation network was the application of flaps in penile reconstruction. CONCLUSIONS: The analysis of top 100 most-cited articles facilitates the comprehensive recognition of current focus in the field of penile surgical reconstruction, which is the exploration of flaps and development of new techniques in penile reconstruction. In the future, more attention should be paid to evidence-based medicine to provide high-level evidence for research. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Bibliometrics , Evidence-Based Medicine , Penis/surgery , Humans , Male , Plastic Surgery Procedures
15.
FEBS Open Bio ; 12(1): 231-249, 2022 01.
Article En | MEDLINE | ID: mdl-34792288

Exposure to extended periods of darkness is a common source of abiotic stress that significantly affects plant growth and development. To understand how Nicotiana benthamiana responds to dark stress, the proteomes and metabolomes of leaves treated with darkness were studied. In total, 5763 proteins and 165 primary metabolites were identified following dark treatment. Additionally, the expression of autophagy-related gene (ATG) proteins was transiently upregulated. Weighted gene coexpression network analysis (WGCNA) was utilized to find the protein modules associated with the response to dark stress. A total of four coexpression modules were obtained. The results indicated that heat-shock protein (HSP70), SnRK1-interacting protein 1, 2A phosphatase-associated protein of 46 kDa (Tap46), and glutamate dehydrogenase (GDH) might play crucial roles in N. benthamiana's response to dark stress. Furthermore, a protein-protein interaction (PPI) network was constructed and top-degreed proteins were predicted to identify potential key factors in the response to dark stress. These proteins include isopropylmalate isomerase (IPMI), eukaryotic elongation factor 5A (ELF5A), and ribosomal protein 5A (RPS5A). Finally, metabolic analysis suggested that some amino acids and sugars were involved in the dark-responsive pathways. Thus, these results provide a new avenue for understanding the defensive mechanism against dark stress at the protein and metabolic levels in N. benthamiana.


Metabolomics , Nicotiana , Proteomics , Gene Regulatory Networks , Metabolome , Plant Leaves/metabolism , Proteome , Nicotiana/genetics , Nicotiana/metabolism
16.
Nucleic Acids Res ; 50(D1): D1448-D1455, 2022 01 07.
Article En | MEDLINE | ID: mdl-34718712

The advent of single-cell sequencing opened a new era in transcriptomic and genomic research. To understand cell composition using single-cell studies, a variety of cell markers have been widely used to label individual cell types. However, the specific database of cell markers for use by the plant research community remains very limited. To overcome this problem, we developed the Plant Cell Marker DataBase (PCMDB, http://www.tobaccodb.org/pcmdb/), which is based on a uniform annotation pipeline. By manually curating over 130 000 research publications, we collected a total of 81 117 cell marker genes of 263 cell types in 22 tissues across six plant species. Tissue- and cell-specific expression patterns can be visualized using multiple tools: eFP Browser, Bar, and UMAP/TSNE graph. The PCMDB also supports several analysis tools, including SCSA and SingleR, which allows for user annotation of cell types. To provide information about plant species currently unsupported in PCMDB, potential marker genes for other plant species can be searched based on homology with the supported species. PCMDB is a user-friendly hierarchical platform that contains five built-in search engines. We believe PCMDB will constitute a useful resource for researchers working on cell type annotation and the prediction of the biological function of individual cells.


Databases, Genetic , Genetic Markers/genetics , Plants/genetics , Software , Computational Biology , Genomics , Plant Cells/classification , Plants/classification , Transcriptome/genetics , User-Computer Interface
17.
Front Genet ; 13: 1102183, 2022.
Article En | MEDLINE | ID: mdl-36744176

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 bp with low or no protein-coding ability, which play essential roles in various biological processes in plants. Tobacco is an ideal model plant for studying nicotine biosynthesis and metabolism, and there is little research on lncRNAs in this field. Therefore, how to take advantage of the mature tobacco system to profoundly investigate the lncRNAs involved in the nicotine pathway is intriguing. By exploiting 549 public RNA-Seq datasets of tobacco, 30,212 lncRNA candidates were identified, including 24,084 large intervening non-coding RNAs (lincRNAs), 5,778 natural antisense transcripts (NATs) and 350 intronic non-coding RNAs (incRNAs). Compared with protein-coding genes, lncRNAs have distinct properties in terms of exon number, sequence length, A/U content, and tissue-specific expression pattern. lincRNAs showed an asymmetric evolutionary pattern, with a higher proportion (68.71%) expressed from the Nicotiana sylvestris (S) subgenome. We predicted the potential cis/trans-regulatory effects on protein-coding genes. One hundred four lncRNAs were detected as precursors of 30 known microRNA (miRNA) family members, and 110 lncRNAs were expected to be the potential endogenous target mimics for 39 miRNAs. By combining the results of weighted gene co-expression network analysis with the differentially expressed gene analysis of topping RNA-seq data, we constructed a sub-network containing eight lncRNAs and 25 nicotine-related coding genes. We confirmed that the expression of seven lncRNAs could be affected by MeJA treatment and may be controlled by the transcription factor NtMYC2 using a quantitative PCR assay and gene editing. The results suggested that lncRNAs are involved in the nicotine pathway. Our findings further deepened the understanding of the features and functions of lncRNAs and provided new candidates for regulating nicotine biosynthesis in tobacco.

18.
Front Plant Sci ; 13: 1019538, 2022.
Article En | MEDLINE | ID: mdl-36600915

Carboxylesterases (CXE) are a class of hydrolytic enzymes with α/ß-folding domains that play a vital role in plant growth, development, stress response, and activation of herbicide-active substances. In this study, 49 Nicotiana tabacum L. CXE genes (NtCXEs) were identified using a sequence homology search. The basic characteristics, phylogenetic evolution, gene structure, subcellular location, promoter cis-elements, and gene expression patterns of the CXE family were systematically analyzed. RNA-seq data and quantitative real-time PCR showed that the expression level of CXEs was associated with various stressors and hormones; gene expression levels were significantly different among the eight tissues examined and at different developmental periods. As a new class of hormones, strigolactones (SLs) are released from the roots of plants and can control the germination of axillary buds.NtCXE7, NtCXE9, NtCXE22, and NtCXE24 were homologous to Arabidopsis SLs hydrolase AtCXE15, and changes in their expression levels were induced by topping and by GR24 (a synthetic analogue of strigolactone). Further examination revealed that NtCXE22-mutant (ntcxe22) plants generated by CRISPR-Cas9 technology had shorter bud outgrowth with lower SLs content. Validation of NtCXE22 was also performed in NtCCD8-OE plants (with fewer axillary buds) and in ntccd8 mutant plants (with more axillary buds). The results suggest that NtCXE22 may act as an efficient SLs hydrolase and affects axillary bud development, thereby providing a feasible method for manipulating endogenous SLs in crops and ornamental plants.

19.
Cancers (Basel) ; 13(16)2021 Aug 13.
Article En | MEDLINE | ID: mdl-34439239

PURPOSE: This study aimed at developing and validating a novel noninvasive urinary exosome-based post-DRE (digital rectal examination) lncRNA assay to diagnose PCa (prostate cancer) and clinically significant PCa (Gleason score ≥ 7) from the initial prostate biopsy. METHODS: A total of 602 urine samples from eligible participants were collected. The expression levels of urinary exosomal PCA3 (prostate cancer antigen 3) and MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) were detected by qPCR (quantitative real-time PCR). Receiver operating characteristic (ROC) analysis was applied to evaluate the diagnostic performance of PCA3, MALAT1 and the lncRNA assay. A decision curve analysis (DCA) and waterfall plots were used to assess the clinical value of the lncRNA assay. RESULTS: Urinary exosomal PCA3 and MALAT1 were overexpressed in PCa and clinically significant PCa (p < 0.001). The lncRNA assay combining PCA3 and MALAT1 had a better diagnostic performance (AUC 0.828) than the current clinical parameters in detecting PCa. More importantly, the lncRNA assay yielded an AUC of 0.831 to detect clinically significant PCa, which is much higher than that of the current clinical parameters. The lncRNA assay was superior to PSA, f/tPSA and the base model for detecting PCa and clinically significant PCa, with a higher net benefit for almost all threshold probabilities. At the cutoff value of 95% sensitivity, the lncRNA assay could avoid 24.2% unnecessary biopsies while only missing 1.2% of the cases of clinically significant PCa. CONCLUSION: We developed and validated a novel noninvasive post-DRE urine-based lncRNA assay that presented good diagnostic power and clinical utility for the early diagnosis of PCa and high-grade PCa.

20.
Front Oncol ; 11: 666320, 2021.
Article En | MEDLINE | ID: mdl-34026644

OBJECTIVES: To identify and validate a biomarker panel by serum metabolic profiling for improvement of PCa diagnosis. MATERIALS AND METHODS: Totally, 134 individuals were included in this study. Among them, 39 PCa patients and 45 control patients (negative prostate biopsy) were involved in the discovery phase and 50 healthy controls were enrolled for validation phase of metabolomics study. LC-MS Analysis was used for the identification of the serum metabolites of patients. RESULTS: Logistics regression analysis shows that 5 metabolites [dMePE(18:0/18:2), PC(16:0/20:2), PS(15:0/18:2), SM(d16:0/24:1], Carnitine C14:0) were significantly changed in PCa patients compared with control patients. A metabolic panel (MET) was calculated, showing a significantly higher diagnostic performance than PSA in differentiating PCa from control patients [AUC (MET vs. PSA): 0.823 ± 0.046 vs. 0.712 ± 0.057, p<0.001]. Moreover, this panel was superior to PSA in distinguishing PCa from negative prostate biopsies when PSA levels were less than 20 ng/ml [AUC (MET vs. PSA]: 0.836 ± 0.050 vs. 0.656 ± 0.067, p<0.001]. In the validation set, the MET panel yielded an AUC of 0.823 in distinguishing PCa patients from healthy controls, showing a significant improvement of PCa detection. CONCLUSIONS: The metabolite biomarker panel discovered in this study presents a good diagnostic performance for the detection of PCa.

...