Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Sci China Life Sci ; 67(4): 745-764, 2024 Apr.
Article En | MEDLINE | ID: mdl-38157106

The gut microbiota plays a pivotal role in systemic metabolic processes and in particular functions, such as developing and preserving the skeletal muscle system. However, the interplay between gut microbiota/metabolites and the regulation of satellite cell (SC) homeostasis, particularly during aging, remains elusive. We propose that gut microbiota and its metabolites modulate SC physiology and homeostasis throughout skeletal muscle development, regeneration, and aging process. Our investigation reveals that microbial dysbiosis manipulated by either antibiotic treatment or fecal microbiota transplantation from aged to adult mice, leads to the activation of SCs or a significant reduction in the total number. Furthermore, employing multi-omics (e.g., RNA-seq, 16S rRNA gene sequencing, and metabolomics) and bioinformatic analysis, we demonstrate that the reduced butyrate levels, alongside the gut microbial dysbiosis, could be the primary factor contributing to the reduction in the number of SCs and subsequent impairments during skeletal muscle aging. Meanwhile, butyrate supplementation can mitigate the antibiotics-induced SC activation irrespective of gut microbiota, potentially by inhibiting the proliferation and differentiation of SCs/myoblasts. The butyrate effect is likely facilitated through the monocarboxylate transporter 1 (Mct1), a lactate transporter enriched on membranes of SCs and myoblasts. As a result, butyrate could serve as an alternative strategy to enhance SC homeostasis and function during skeletal muscle aging. Our findings shed light on the potential application of microbial metabolites in maintaining SC homeostasis and preventing skeletal muscle aging.


Butyrates , Dysbiosis , Mice , Animals , RNA, Ribosomal, 16S/genetics , Aging , Homeostasis
2.
Anal Methods ; 15(23): 2868-2875, 2023 06 15.
Article En | MEDLINE | ID: mdl-37272888

Ozone (O3) is ubiquitous in the environment and exposure to high levels of O3 has been associated with various respiratory diseases, such as asthma, emphysema, and bronchitis. Therefore, it is necessary to develop a simple and efficient detection method for monitoring O3 in the environment and living cells. In this study, an intramolecular charge-transfer (ICT) compound was designed and synthesized based on a phenol-type hemicyanine dye and 4-bromo-1-butene, which could specifically detect O3 in aqueous solution. Due to the ICT process, the absorption spectrum, fluorescence spectrum, and color of the probe hemicyanine-butyl-3-enyl (HCB) changed significantly and thus the rapid and sensitive detection of O3 was realized. The interaction between O3 and the probe HCB could be completed within 40 min, and the detection limit of O3 was as low as 2.15 × 10-7 mol L-1. Finally, the proposed method was successfully applied to the visual detection of O3 in a simulated O3 environment and living cells.


Fluorescent Dyes , Ozone , Colorimetry/methods , Optical Imaging/methods
3.
BMC Vet Res ; 19(1): 26, 2023 Jan 30.
Article En | MEDLINE | ID: mdl-36717886

BACKGROUND: Porcine circovirus type 2 (PCV2) is one of the major pathogens commonly found in pigs, which causes immunosuppression and apoptosis. Vaccination and a single drug cannot totally prevent and treat PCV2 infection. Our previous in vitro study reported that the synergistic anti-PCV2 effect of Matrine and Osthole was better than that of Matrine or Osthole alone, This study was aimed to evaluate the synergistic anti-PCV2 effect as well as the underline molecular mechanism of Matrine and Osthole in Kunming (KM) mice model infected with PCV2. KM mice were randomly divided into 8 groups namely control group, PCV2 infected, Matrine combined with Osthole high dose treatment (40 mg/kg + 12 mg/kg), medium dose treatment (20 mg/kg + 6 mg/kg), low dose treatment (10 mg/kg + 3 mg/kg), Matrine treatment (40 mg/kg), Osthole treatment (12 mg/kg) and Ribavirin positive control (40 mg/kg) groups. PCV2 was intraperitoneally (i.p.) injected in all mice except the control group. 5 days of post-infection (dpi), mice in different treatment groups were injected i.p. with various doses of Matrine, Osthole and Ribavirin once daily for the next 5 consecutive days. RESULTS: The synergistic inhibitory effect of Matrine and Osthole on PCV2 replication in mouse liver was significantly heigher than that of Matrine and Osthole alone. The expression of GRP78, p-PERK, p-eIF2α, ATF4, CHOP, cleaved caspase-3 and Bax proteins were significantly reduced, while that of Bcl-2 was significantly increased in Matrine combined with Osthole groups, which alleviated the pathological changes caused by PCV2, such as interstitial pneumonia, loss of spleen lymphocytes, infiltration of macrophages and eosinophils. CONCLUSIONS: The synergistic anti-apoptotic effect of Matrine and Osthole was better than their alone effect, Both Matrine and Osthole had directly inhibited the expression of PCV2 Cap and the apoptosis of spleen cells induced by PCV2 Cap through the PERK pathway activated by endoplasmic reticulum (ER) GRP78. These results provided a new insight to control PCV2 infection and provide good component prescription candidate for the development of novel anti-PCV2 drugs.


Circoviridae Infections , Circovirus , Matrines , Animals , Mice , Apoptosis , Circoviridae Infections/drug therapy , Circoviridae Infections/pathology , Endoplasmic Reticulum Chaperone BiP , Matrines/pharmacology , Ribavirin/pharmacology , Spleen
4.
Int Immunopharmacol ; 115: 109650, 2023 Feb.
Article En | MEDLINE | ID: mdl-36649673

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) first appeared in Wuhan, China, in December 2019. The 2019 coronavirus disease (COVID-19) pandemic, caused by SARS-CoV-2, has spread to almost all corners of the world at an alarming rate. Vaccination is important for the prevention and control of the COVID-19 pandemic. Efforts are underway worldwide to develop an effective vaccine against COVID-19 using both traditional and innovative vaccine strategies. Compared to other vaccine platforms, SARS-CoV-2 virus-like particles (VLPs )vaccines, as a new vaccine platform, have unique advantages: they have artificial nanostructures similar to natural SARS-CoV-2, which can stimulate good cellular and humoral immune responses in the organism; they have no viral nucleic acids, have good safety and thermal stability, and can be mass-produced and stored; their surfaces can be processed and modified, such as the adjuvant addition, etc.; they can be considered as an ideal platform for COVID-19 vaccine development. This review aims to shed light on the current knowledge and progress of VLPs vaccines against COVID-19, especially those undergoing clinical trials.


COVID-19 , Viral Vaccines , Humans , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Pandemics/prevention & control
5.
Microbiol Spectr ; 10(4): e0065722, 2022 08 31.
Article En | MEDLINE | ID: mdl-35730951

Inflammatory bowel disease (IBD) has become a global public health problem. Although the pathogenesis of the disease is unknown, a potential association between the gut microbiota and inflammatory signatures has been established. Probiotics, especially Lactobacillus or Bifidobacterium, are orally taken as food supplements or microbial drugs by patients with IBD or gastrointestinal disorders due to their safety, efficacy, and power to restore the gut microenvironment. In the current study, we investigated the comprehensive effects of probiotic bacterial consortia consisting of Lactobacillus reuteri, Lactobacillus gasseri, Lactobacillus acidophilus (Lactobacillus spp.), and Bifidobacterium lactis (Bifidobacterium spp.) or their metabolites in a dextran sodium sulfate (DSS)-induced colitis mouse model. Our data demonstrate that probiotic consortia not only ameliorate the disease phenotype but also restore the composition and structure of the gut microbiota. Moreover, the effect of probiotic consortia is better than that of any single probiotic strain. The results also demonstrate that mixed fermentation metabolites are capable of ameliorating the symptoms of gut inflammation. However, the administration of metabolites is not as effective as probiotic consortia with respect to phenotypic characteristics, such as body weight, disease activity index (DAI), and histological score. In addition, mixed metabolites led only to changes in intestinal flora composition. In summary, probiotic consortia and metabolites could exert protective roles in the DSS-induced colitis mouse model by reducing inflammation and regulating microbial dysbiosis. These findings from the current study provide support for the development of probiotic-based microbial products as an alternative therapeutic strategy for IBD. IMPORTANCE IBD is a chronic nonspecific inflammatory disease. IBD is characterized by a wide range of lesions, often involving the entire colon, and is characterized mainly by ulcers and erosions of the colonic mucosa. In the present study, we investigated the efficacy of probiotics on the recovery of gut inflammation and the restoration of gut microecology. We demonstrate that probiotic consortia have a superior effect in inhibiting inflammation and accelerating recovery compared with the effects observed in the control group or groups administered with a single strain. These results support the utilization of probiotic consortia as an alternative therapeutic approach to treat IBD.


Colitis , Inflammatory Bowel Diseases , Probiotics , Animals , Bifidobacterium/physiology , Colitis/drug therapy , Colitis/therapy , Colon/microbiology , Dextran Sulfate/adverse effects , Disease Models, Animal , Inflammation/pathology , Inflammatory Bowel Diseases/therapy , Lactobacillus/physiology , Mice , Probiotics/pharmacology , Probiotics/therapeutic use
6.
BMC Vet Res ; 17(1): 318, 2021 Sep 30.
Article En | MEDLINE | ID: mdl-34587973

BACKGROUND: Encephalomyocarditis virus (EMCV) infection can cause reproductive failure in sows and acute myocarditis and sudden death in piglets. It has caused huge economic losses to the global pig industry and that is why it is necessary to develop effective new treatment compounds. Zedoary turmeric oil has been used for treating myocarditis. Curcumol extracted from the roots of curcuma is one of the main active ingredient of zedoary turmeric oil. The anti-EMCV activity of curcumol along with the molecular mechanisms involved with a focus on IFN-ß signaling pathway was investigated in this study. METHOD: 3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the maximum non-toxic concentration (MNTC), 50% cytotoxic concentration (CC50), maximum inhibition rate (MIR) and 50% effective concentration (EC50) against EMCV. Through EMCV load, the anti-viral effect of curcumol was quantitatively determined using real-time quantitative PCR (qPCR). The effect of curcumol on the expression of IFN-ß was investigated using real-time quantitative PCR and ELISA. Western blot was used to determine the amounts of MDA5, MAVS, TANK, IRF3 and P-IRF3 proteins in human embryonic kidney 293 T (HEK-293 T) cells infected with EMCV. RESULTS: The results of MTT showed that compared with the ribavirin positive control group, the maximum inhibition ratio (MIR) of curcumol was greater but the selection index (SI) value was much smaller than that of ribavirin. The results of qPCR showed that curcumol and ribavirin significantly reduced the replication of EMCV in HEK-293 T cells. The curcumol (0.025 mg/mL) treatment has significantly increased IFN-ß mRNA expression in the EMCV-infected HEK-293 T cells while ribavirin treatment did not. The results of ELISA showed that curcumol (0.025 mg/mL and 0.0125 mg/mL) has significantly increased the expression of IFN-ß protein in EMCV-infected HEK-293 T cells. The results of Western blot showed that curcumol can inhibit the degradation of TANK protein mediated by EMCV and promote the expression of MDA5 and P-IRF3, while the protein expression level of MAVS and IRF3 remain unchanged. CONCLUSION: Curcumol has biological activity against EMCV which we suggest that IFN-ß signaling pathway is one of its mechanisms.


Antiviral Agents/pharmacology , Encephalomyocarditis virus/drug effects , Sesquiterpenes/pharmacology , Cardiovirus Infections/drug therapy , Cardiovirus Infections/virology , HEK293 Cells , Humans , Interferon-beta/drug effects , Interferon-beta/metabolism , Ribavirin/pharmacology , Sesquiterpenes/toxicity , Signal Transduction/drug effects , Virus Replication/drug effects
7.
BMC Microbiol ; 20(1): 303, 2020 10 12.
Article En | MEDLINE | ID: mdl-33046006

BACKGROUND: Porcine circovirus type 2 (PCV2) is an important and common DNA virus that infect pig and can cause immunosuppression and induce apoptosis in the infected cells. To escape the host immune system, PCV2 constantly builds up complex mechanisms or mutates genes, and that is why it is difficult to eradicate complex PCV2 infection by relying on vaccines and single compound. At present, there is few literature reports on the effective prevention and treatment of PCV2 infection by a combination of two or more compounds. Previously, we have demonstrated the anti-PCV2 effect of Matrine in vitro, but its mechanism has not been further evaluated. Literatures have proven that Osthole has a variety of pharmacological activities, and we tested the ability of Osthole to inhibit PCV2 replication in cell culture. Therefore, this study explored the synergistic antiviral effect of Matrine combined with Osthole and their synergistic anti-apoptotic mechanism. RESULTS: Osthole alone had an anti-PCV2 effect, and then its synergistic anti-PCV2 effect of Osthole and Matrine was better than that of Matrine or Osthole alone as demonstrated by qRT-PCR, IFA and Western blotting results. The anti-apoptotic mechanism of these two compounds by inducing the PERK pathway by PCV2 was elucidated through Annexin V-FITC/PI, JC-1 and Western blotting. Matrine and Osthole combination could inhibit the expression of Cap in Cap-transfected PK-15 cells, thus inhibiting Cap-induced PERK apoptosis. Ribavirin was used as a positive control. CONCLUSIONS: The combination of Osthole and Matrine had the synergistic effect of anti-PCV2 infection by directly inhibiting the expression of PCV2 Cap protein. The combination of these two compounds also inhibited PERK apoptosis induced by PCV2 Cap protein, possibly by regulating the level of GRP78. The results formed a base for further studies on the mechanism of anti-PCV2 in vivo using Matrine and Osthole combination and developing new anti-PCV2 compounds with Cap and GRP78 as therapeutic targets.


Alkaloids/pharmacology , Antiviral Agents/pharmacology , Circovirus/drug effects , Coumarins/pharmacology , Gene Expression Regulation/drug effects , Host-Pathogen Interactions/drug effects , Quinolizines/pharmacology , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Caspase 3/genetics , Caspase 3/metabolism , Cell Line , Circovirus/genetics , Circovirus/metabolism , Drug Combinations , Drug Synergism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Endoplasmic Reticulum Chaperone BiP , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Host-Pathogen Interactions/genetics , Kidney/drug effects , Kidney/metabolism , Kidney/virology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Swine , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Matrines
8.
BMC Vet Res ; 16(1): 345, 2020 Sep 18.
Article En | MEDLINE | ID: mdl-32948186

BACKGROUND: Porcine circovirus type 2 (PCV2) is an immunosuppressive pathogen with high prevalence rate in pig farms. It has caused serious economic losses to the global pig industry. Due to the rapid mutation of PCV2 strain and co-infection of different genotypes, vaccination could not eradicate the infection of PCV2. It is necessary to screen and develop effective new compounds and explore their anti-apoptotic mechanism. The 13 natural compounds were purchased, with a clear plant origin, chemical structure and content and specific biological activities. RESULTS: The maximum no-cytotoxic concentration (MNTC) and 50% cytotoxic concentration (CC50) of 13 tested compounds were obtained by the cytopathologic effect (CPE) assay and (3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method in PK-15 cells. The results of qPCR and Western blot showed that, compared with the PCV2 infected group, the expression of Cap in Paeonol (0.4 mg/mL and 0.2 mg/mL), Cepharanthine (0.003 mg/mL, 0.0015 mg/mL and 0.00075 mg/mL) and Curcumin (0.02 mg/mL, 0.001 mg/mL and 0.005 mg/mL) treated groups were significantly lowered in a dose-dependent manner. The results of Annexin V-FITC/PI, JC-1, Western blot and ROS analysis showed that the expression of cleaved caspase-3 and Bax were up-regulated Bcl-2 was down-regulated in Cepharanthine or Curcumin treated groups, while ROS and MMP value were decreased at different degrees and the apoptosis rate was reduced. In this study, Ribavirin was used as a positive control. CONCLUSIONS: Paeonol, Cepharanthine and Curcumin have significant antiviral effect. And the PCV2-induced Mitochondrial apoptosis was mainly remitted by Cepharanthine and Curcumin.


Apoptosis/drug effects , Benzylisoquinolines/pharmacology , Circovirus/drug effects , Curcumin/pharmacology , Acetophenones/pharmacology , Acetophenones/toxicity , Animals , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , Benzylisoquinolines/toxicity , Cell Line , Circoviridae Infections/drug therapy , Curcumin/toxicity , Mitochondria/drug effects , Plant Extracts/pharmacology , Plant Extracts/toxicity , Swine
...